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1- The von Koch Function

Search for continuous but nowhere differentiable functions :

Riemann Fourier series :

∑
n≥1

sin(πn2x)

n2

1.2657

-1.2657
0 2

Weierstrass function :

0 < H < 1,
∑
n≥1

2−nHsin(2nx)

Later, examples by Takagi, Bouligand, .... then Brownian motion....
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1- The von Koch Function
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120 years ago : the von Koch Function
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Theorem (von Koch, 1904, 1906)
F is a continuous but nowhere differentiable function.

Question : Multifractal properties of F ?

I Pointwise Hölder exponent ?

I Multifractal spectrum? Multifractal formalism ?

I Existence of infinite derivatives ?
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II - The parametrized family of von Koch functions

Fix a parameter parameter λ > 0,
and consider the following
geometric construction rule :

A

B

C

D

E

M

MD = λAB

• For all x ∈ [0, 1], F0(x) = 0.
Apply the process to [0, 1] to get F1.

F1 is piecewise linear,
Apply the rule to each of the line seg-
ments to get F2 : A = 0 B = 1C = 1

3

D

E = 2
3

M = 1
2

MD = λ

I The von Koch function corresponds to λ =
√
3

6
≈ 0.289
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I No closed-form expression for Fλ(x)

I Not a De Rham curve nor a solution to simple functional equations

I Self-similarity or IFS methods cannot directly be used

I The von Koch function corresponds to λ =
√

3
6
≈ 0.289

I Different ranges of parameters : (0, 1
6
], ( 1

6
,
√

2
6
], (
√
2

6
, 1
3
], ( 1

3
, 5
6
), ≥ 5

6
.
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Pointwise regularity of a function :

In our case all exponents are less than one, so :

Definition
The pointwise Hölder exponent of a locally bounded function f at x0 is

Hf (x0) = lim inf
x→x0

log |f(x)− f(x0)|
log |x− x0|

.

Definition

The multifractal spectrum Df of f : Rd → R is the mapping

Df : H 7−→ dimEf (H), where Ef (H) = {x ∈ Rd : Hf (x) = H}.

• dim = Hausdorff
• dim ∅ = −∞
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Self-similar measures :
Consider the mapping

T (x) =


3x if 0 ≤ x < 1

3

6x− 2 if 1
3
≤ x < 1

2

4− 6x if 1
2
≤ x < 2

3

3x− 2 if 2
3
≤ x < 1.

Consider the 4 inverse branches of T :
S0(x) =

x
3
, S1(x) =

x
6
+ 1

3
,

S2(x) = −x6 + 2
3
and S3(x) =

x
3
+ 2

3
.

• The attractor of S = (Si)i=0,1,2,3 is [0, 1]
• S satisfies the OSC

• For (pi)i=0,...,3 ∈ [0, 1]4

a probability vector,
consider the invariant measure

µ =

3∑
i=0

piµ ◦ S−1
i

In(x)

In+1(x) In+1(x) In+1(x) In+1(x)

1
3γ

1+6λ
6γ

−1+6λ
6γ

1
3γ

xn+1 = 0 = 1 = 2 = 3

• The multifractal spectrum dµλ of such a self-similar measure µ is known.
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3- Our results

Theorem

Let λ ∈ (
√

2
6
, 5
6
), and let γλ ≥ 1 be the unique real number such that

1

3γλ
+

6λ+ 1

6γλ
+

6λ− 1

6γλ
+

1

3γλ
= 1.

Consider the self-similar measure µλ associated with the (pi,λ)i=0,...,3, where

p0,λ = p3,λ =
1

3γλ
, p1,λ =

6λ+ 1

6γλ
, p2,λ =

6λ− 1

6γλ
.

Then :
(i) The support of dFλ(α) is [αλ,min, 1] :=

[
1− log(6λ+1)

log 6
, 1
]
.

(ii) For every α ∈
[
αλ,min, 1

]
,
dFλ(α) = dµλ(α− 1 + γλ).

In particular, dFλ is strictly concave on its support, the maximum of dFλ is 1
and is reached at the exponent

αλ,L = 1− log(36λ2 − 1)

4 log 3 + 2 log 6
.
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Simple statement for the theorem, but various situations :

Always concave, touches 0 on the left, but always ≥ log 2
log 3

at 1.
Why ? On the triadic Cantor set, exponent 1.

Discontinuity of the mapping λ 7→ dFλ at λ = 1
3
.

This corresponds to the situation where log p0,λ
log 3

=
log p2,λ
log 6

.

The value of the spectrum at 1 for λ = 1
3
is the solution to :

6−s + 2 · 3−s = 1.

For 1
6
< λ ≤ 1

3
, the graph of the spectrum dFλ is a continuous mapping of λ.
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Theorem

Let λ ∈ ( 1
6
,
√
2
6
], consider the same quantities γλ, (pi,λ)i=0,...,3 and the Bernoulli

measure µλ as in the previous theorem.
(i) The support of dFλ is [αλ,min, 1] =

[
1− log(6λ+1)

log 6
, 1
]
.

(ii) For every α ∈
[
1− log(6λ+1)

log 6
, 1
]
,

dFλ(α) ≥ dµλ(α+ 1− γλ).

(ii) The multifractal spectrum dFλ is continuous at 1.

The lower bound
is obviously
not sharp !
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Ideas :
(1) The local regularity of Fλ at x is governed by the orbit (Tnx)n≥0 of x under T .

Call x(n) = 0, 1, 2 or 3 according to the fact
that Tn(x) belongs to the interval
[0, 1/3), (1/3, 1/2), (1/2, 2/3) or (2/3, 1).

For ε0, ε1, ..., εn ∈ {0, 1, 2, 3}n+1, call
Iε1,...,εn = {x : x(i) = εi for i ∈ {0, ..., n}}.

In(x)= unique interval of generation n containing x.

(2) Given x, the slopes on the intermediate functions Fλn on In(x) are key.

m+ 6λ
√
1 +m2 > 0

A

B

Slope AB = m > 0

m

m

m− 6λ
√
1 +m2

m+ 6λ
√
1 +m2 > 0

A

Slope AB = m� 1 and λ� 1

m

m

m− 6λ
√
1 +m2 > 0 B
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Ideas :

m+ 6λ
√
1 +m2 > 0

A

B

Slope AB = m > 0

m

m

m− 6λ
√
1 +m2

m+ 6λ
√
1 +m2 > 0

A

Slope AB = m� 1 and λ� 1

m

m

m− 6λ
√
1 +m2 > 0 B

I (Monotonic slopes) Take λ > 1
6
to ensure that m− 6λ

√
1 +m2 < 0

I (Increasing slopes) Take λ > 1
3
to ensure that |m− 6λ

√
1 +m2| > m

When m is large, mn+1 ∼


mn

mn(6λ+ 1)

mn(6λ− 1)

mn

.

So, in an perfect world, mn(x) ∼ µλ(In(x))|In(x)|−γλ .
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Ideas :

(3) Easier when slopes tend to infinity :

Proposition
Provided that dim(µ, x) + 1− γλ ≤ 1 and mn(x)→ +∞,

HFλ(x) = dim(µ, x) + 1− γλ.

When 1/3 < λ < 5/6, limn→+∞mn(x) = +∞ for every x ∈ [0, 1].

Theorem
When λ > 1/3, dFλ = dµλ(· − 1 + γλ).

(4) When λ ≤ 1/3, mn(x) 6→ +∞ for many x’s, because of the geometric
construction.
Our approach consists in assuming that points such that mn(x) 6→ +∞ cannot
modify the spectrum.
Proceeding toward a contradiction, we assume that this is the case.
Then we build an IFS satisfying the SOSC on which mn(x)→ +∞ but with a too
large dimension.
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Provided that dim(µ, x) + 1− γλ ≤ 1 and mn(x)→ +∞,

HFλ(x) = dim(µ, x) + 1− γλ.

When 1/3 < λ < 5/6, limn→+∞mn(x) = +∞ for every x ∈ [0, 1].

Theorem
When λ > 1/3, dFλ = dµλ(· − 1 + γλ).

(4) When λ ≤ 1/3, mn(x) 6→ +∞ for many x’s, because of the geometric
construction.

Our approach consists in assuming that points such that mn(x) 6→ +∞ cannot
modify the spectrum.
Proceeding toward a contradiction, we assume that this is the case.
Then we build an IFS satisfying the SOSC on which mn(x)→ +∞ but with a too
large dimension.
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Open questions :

spectrum when λ ∈ (1/6,
√
2

6
] ?

spectrum when λ ≤ 1/6 ?

multifractal formalism ?

spectrum of 1-exponents when λ ≥ 5
6
?

random versions ?

Danke schön !
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