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Fourier decay

• Fourier transform of a measure µ on Rd is

µ̂(ξ) =

ˆ
e−2πiξ·x dµ(x), ξ ∈ Rd

• Fourier decay, i.e. decay rates of µ̂(ξ) for large |ξ| appear as a tool
to study e.g:

- multiplicity of trigonometric series on fractals
- restriction theorems on fractals
- equidistribution and Diophantine properties of fractals
- patterns on fractals and intersections of fractals
- absolute continuity and projection properties of fractal measures
- exponential mixing rates in dynamics
- fractal uncertainty principles in quantum chaos
- distribution of scattering resonances of the Laplacian and resulting

energy decay rates of wave equations on open hyperbolic systems

• What techniques there to study the Fourier decay of µ?
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Techniques to study Fourier decay of µ

1. if µ has “curvature” , e.g.
• µ supported on a curved submanifold of Rd

Tools: integration by parts (Van den Corput lemma, stationary phase), for
L6 norms of µ̂: decoupling techniques (Bourgain, Demeter, Dasu) and
Furstenberg set problem (Orponen, Puliatti, Pyörälä)



Techniques to study Fourier decay of µ
2. µ is “random” : e.g.

• random Cantor construction (Salem),
• push-forward under Brownian motion and Levy processes or
level- or graph measures (Kahane, Shieh, Xiao, Fouche, Mukeru,
Fraser, Orponen, S., Dysthe, Lai,...)
• Liouville Quantum Gravity (Falconer, Jin), SI-martingales
(Shmerkin, Suomala), Gaussian multiplicative chaos (Garban,
Vargas), Mandelbrot multiplicative cascades (Chen, Li, Suomala)

Tools: stochastic autosimilarity, time-independence or decay of correlations



Techniques to study Fourier decay of µ

3. µ has “Diophantine properties” , e.g.
• supported on well-, badly-, exact approximable or Liouville
numbers or vectors (Kaufman, Bluhm, Queffelec, Ramare, Hambrook,
Yu, Fraser, Wheeler,...)
• supported on sets of inhomogeneous approximation (Hambrook,
Chow, Zafeiropoulos, Zorin)

Tools: symmetries/Diophantine properties of continuants, strong uniform
non-integrability of the Gauss map, Ostrowski expansions



Techniques to study Fourier decay of µ
4. µ is “stationary for a random walk or dynamical system”, e.g.

• Patterson-Sullivan measures of convex cocompact hyperbolic
manifolds (Bourgain, Dyatlov, Li, Naud, Pan, Khalil, Baker, S. etc.)
• Furstenberg- and stationary measures (Li, Dinh, Kaufmann, Wu)
• self-similar, conformal or affine measures (Salem, Erdös, Kahane,
Strichartz, Tsujii, Solomyak, Jordan, Lindenstrauss, Varjú, Mosquera,
Shmerkin, Li, S., Bremont, Yu, Algom, Hertz, Wang, Baker, Banaji, Chang,
Wu, Wu, Rapaport, Streck, Paukkonen, Avila, Lyubich, Zhang, ...)
• equilibrium measures for Axiom A diffeomorphisms (Leclerc)

Tools: algebraic properties of contractions (Pisot or not, etc.), spectral
theory of transfer operators, representation theory, CLT, renewal theory,
discretised sum-product theory, autosimilarity of the temporal distances



Average Fourier decay and L2 flattening

• If µ is self-similar on C1/3, then µ̂ ̸→ 0 as µ̂(3n) = µ̂(1), ∀n ∈ N...
• ...but Tsujii (2012) proved ∀ε > 0,∃κ = κ(ε) > 0 s.t. for all T > 1:

{ϱ ∈ [−T, T ] : |µ̂(ϱ)| > T−κ}

is covered by CεT
ε intervals [n, n+ 1) ⊂ [−T, T ], n ∈ Z.

• Tsujii’s result works for self-similar measures, but it is manifestation of:

Average Fourier decay for non-concentrated measures (Khalil, 2023)

If µ on Rd is “(C,α)-uniformly affinely non-concentrated”, i.e.
∃C,α > 0 s.t. ∀ε > 0, x ∈ supp(µ), 0 < r < 1 and affine hyperplane W :

µ(y ∈ B(x, r) : d(y,W ) ≤ εr) ≤ Cεαµ(B(x, r)),

then: ∀ε > 0,∃κ = κ(ε) > 0 s.t. for all T > 1:

{ϱ ∈ [−T, T ]d : |µ̂(ϱ)| > T κ}

is covered by CεT
ε cubes [0, 1)d + n ⊂ [−T, T ]d, n ∈ Zd.
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Average Fourier decay and L2 flattening
If µ is a measure on Rd and Dk = {2−k([0, 1)d + n) : n ∈ Zd}, define:

µk :=
∑

D∈Dk

µ(D)δD and ∥µk∥2 :=
( ∑

D∈Dk

µk(D)2
)1/2

Theorem (Khalil, 2023)

If C,α > 0, then ∀ε > 0, ∃n, k0 ∈ N s.t. for all µ (C,α)-uniformly affinely
non-concentrated and for all k ≥ k0 we have: ∥µ∗n

k ∥22 ≲ 22d(n−1)−(d−ε)k.

• Implies growth of Lq dimensions under convolutions that was done in d = 1
by Rossi-Shmerkin (2019) that employed Shmerkin’s inverse theorem.

• Implies average Fourier decay: If κ = ε
4n+4d and 2k ≤ T < 2k+1, then:

|{∥ϱ∥ ≤ T, |µ̂(ϱ)| > T−κ}| · T 2nκ ≤
ˆ

∥ϱ∥≤T

|µ̂(ϱ)|2n dϱ =

ˆ

∥ϱ∥≤T

|µ̂∗n(ϱ)|2 dϱ

≲ T 2d

ˆ
µ∗n(B(x, 1/T ))2 dx ≲ T 2d2−dk

∑
D∈Dk

µ∗n(D)2 ≲d,n T ε



Average Fourier decay and L2 flattening
If µ is a measure on Rd and Dk = {2−k([0, 1)d + n) : n ∈ Zd}, define:

µk :=
∑

D∈Dk

µ(D)δD and ∥µk∥2 :=
( ∑

D∈Dk

µk(D)2
)1/2

Theorem (Khalil, 2023)

If C,α > 0, then ∀ε > 0, ∃n, k0 ∈ N s.t. for all µ (C,α)-uniformly affinely
non-concentrated and for all k ≥ k0 we have: ∥µ∗n

k ∥22 ≲ 22d(n−1)−(d−ε)k.

• Implies growth of Lq dimensions under convolutions that was done in d = 1
by Rossi-Shmerkin (2019) that employed Shmerkin’s inverse theorem.

• Implies average Fourier decay: If κ = ε
4n+4d and 2k ≤ T < 2k+1, then:

|{∥ϱ∥ ≤ T, |µ̂(ϱ)| > T−κ}| · T 2nκ ≤
ˆ

∥ϱ∥≤T

|µ̂(ϱ)|2n dϱ =

ˆ

∥ϱ∥≤T

|µ̂∗n(ϱ)|2 dϱ

≲ T 2d

ˆ
µ∗n(B(x, 1/T ))2 dx ≲ T 2d2−dk

∑
D∈Dk

µ∗n(D)2 ≲d,n T ε



Average Fourier decay and L2 flattening
If µ is a measure on Rd and Dk = {2−k([0, 1)d + n) : n ∈ Zd}, define:

µk :=
∑

D∈Dk

µ(D)δD and ∥µk∥2 :=
( ∑

D∈Dk

µk(D)2
)1/2

Theorem (Khalil, 2023)

If C,α > 0, then ∀ε > 0, ∃n, k0 ∈ N s.t. for all µ (C,α)-uniformly affinely
non-concentrated and for all k ≥ k0 we have: ∥µ∗n

k ∥22 ≲ 22d(n−1)−(d−ε)k.

• Implies growth of Lq dimensions under convolutions that was done in d = 1
by Rossi-Shmerkin (2019) that employed Shmerkin’s inverse theorem.

• Implies average Fourier decay: If κ = ε
4n+4d and 2k ≤ T < 2k+1, then:

|{∥ϱ∥ ≤ T, |µ̂(ϱ)| > T−κ}| · T 2nκ ≤
ˆ

∥ϱ∥≤T

|µ̂(ϱ)|2n dϱ =

ˆ

∥ϱ∥≤T

|µ̂∗n(ϱ)|2 dϱ

≲ T 2d

ˆ
µ∗n(B(x, 1/T ))2 dx ≲ T 2d2−dk

∑
D∈Dk

µ∗n(D)2 ≲d,n T ε



Can we go from average Fourier decay to full Fourier decay?

Baker, Khalil, S.: Fourier decay from L2-flattening, arXiv:2407.16699

• Let µ be a “dynamically defined” measure (e.g. stationary for an IFS)

Step 1: Averaging: Express µ̂(ξ) as average over µ̂x(ξw), where
- µx, x ∈ X, are blow-ups (scaled copies of µ at pieces of suppµ) and
- ξw ∈ Rd are random frequencies sampled by the dynamics

Step 2: Flattening: Show ∀x that µ̂x has desired decay rate on large set
of frequencies with exceptional set Eξ independent of x

Step 3: Separation: Use some Diophantine, autosimilarity or non-linearity
property of the dynamics s.t. ξw are spread out so they must have small
intersection with the exceptional set Eξ from Step 2.
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Consequences
As L2 flattening was proved in Rd, it removes many difficulties that arise in
higher dimensional theory giving also new unified proofs that avoid earlier
techniques such as discretised sum-product- or renewal theory.

Results include:

• Polylogarithmic Fourier decay for Diophantine self-similar µ on Rd

• Polynomial Fourier decay for Patterson-Sullivan measures µ on convex
co-compact hyperbolic manifolds with Zariski dense group of isometries

• Polynomial Fourier decay for Gibbs measures µ for non-linear conformal
C2 IFSs in Rd

• Polynomial Fourier decay for the stationary measures µ of carpet
non-conformal IFSs that are non-linear in each principal direction

• New bound for essential spectral gap for the scattering resonances of the
Laplacian and Fractal Uncertainty Principles independent of the
doubling constant of the PS measure

• Equidistribution of vectors on the supports of the above µ

Some earlier works: Bourgain-Dyatlov ’16, Li-Naud-Pan ’21, Li-S. ’21,
Algom-Hertz-Wang ’21, Lindenstrauss-Varjú ’16, Dayan-Ganguly-Weiss ’20,
S.-Stevens ’22 and Algom-Hertz-Wang ’22, Backus-Leng-Tao ’23, ...
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Example: Diophantine self-similar measures in R

• Consider IFS {f0(x) = r0x+ t0, f1(x) = r1x+ t1}, r0, r1 > 0, s.t.
log r0
log r1

is Diophantine: ∃c > 0, l > 2 s.t. ∀p
q ∈ Q :∣∣∣ log r0

log r1
− p

q

∣∣∣ > c

ql
.

(e.g. r0 = 1/2 and r1 = 1/3)
• Let µ be the self-similar measure

µ =
1

2
(f0µ+ f1µ).

• Thus iterating this for any W ⊂ {0, 1}∗ s.t. cylinders [w], w ∈ W,
form a partition of {0, 1}N, we have:

ˆ
φ(x) dµ(x) =

∑
w∈W

2−|w|
ˆ

φ(fw(x)) dµ(x)

∀ continuous φ : [0, 1] → C if fw(x) := fw1 ◦ .. ◦ fwk
(x).
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Step 1: Averaging

• Let ξ ∈ R, |ξ| ≫ 1

• By self-similarity fw(x) = rwx+ tw for rw := rw1 . . . rwlog |ξ| :

|µ̂(ξ)| =
∣∣∣ ∑
|rwξ|∼(log |ξ|)2l

2−|w|
ˆ

e−2πiξfw(x) dµ(x)
∣∣∣

≤
∑

|rwξ|∼(log |ξ|)2l
2−|w||µ̂(rwξ)|

(recall l > 2 comes from the Diophantine condition)
(So in the general strategy µx = µ and ξw = rwξ)



Step 2: Flattening

• If T = (log |ξ|)2l and ε > 0 small, let Eξ ⊂ Z be the set of
exceptional n ∈ Z s.t. ∃ϱ ∈ [n, n+ 1) ∩ [−T, T ] satisfying

|µ̂(ϱ)| > T−κ(ε).

Thus by L2 flattening ♯Eξ ≲ (log |ξ|)ε

• We can reduce to sum over Eξ using ∥µ̂∥∞ ≤ 1:

|µ̂(ξ)| ≲
∑

|rwξ|∼(log |ξ|)2l
2−|w||µ̂(rwξ)|

≲
∑
n∈N

∑
|rwξ|∼(log |ξ|)2l

2−|w||µ̂(rwξ)|1(rwξ ∈ [n, n+ 1))

≲
∑
n∈Eξ

∑
|rwξ|∼(log |ξ|)2l

2−|w|1(rwξ ∈ [n, n+ 1)) + (log |ξ|)−2lκ(ε).
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Step 3: Separation
• If |rwξ|, |rvξ| ∼ (log |ξ|)2l and rw ̸= rv, by letting p, q ∈ Z as the

differences of 1:s and 0:s between the words w and v, then

|rwξ−rvξ| = |rvξ|
∣∣∣1−rw

rv

∣∣∣ ≥ |rvξ|(q log r1)
∣∣∣ log r0
log r1

−p

q

∣∣∣ ≳ (log |ξ|)l > 1.

• Thus ∀n ∈ Z, ∃ unique Nn ∈ N s.t. ∀w with rwξ ∈ [n, n+ 1) s.t.
rw = rNn

0 r
|w|−Nn

1 .
• Thus, as |w| ≳ (log |ξ|)c1 for some c1 > 0, we arrive to:

|µ̂(ξ)| ≲
∑
n∈Eξ

∑
|rwξ|∼(log |ξ|)2l

2−|w|1(rwξ ∈ [n, n+ 1)) + (log |ξ|)−2lκ(ε)

≲
∑
n∈Eξ

max
|rwξ|∼(log |ξ|)2l

2−|w|
(
|w|
Nn

)
+ (log |ξ|)−2lκ(ε)

≲ ♯Eξ(log |ξ|)−
c1
2 + (log |ξ|)−2lκ(ε)

≲ (log |ξ|)−c2

since
(
L
N

)
≲ 2LL− 1

2 , ∀N ≤ L and ♯Eξ ≲ (log |ξ|)ε and ε is small.
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≲ (log |ξ|)−c2

since
(
L
N

)
≲ 2LL− 1

2 , ∀N ≤ L and ♯Eξ ≲ (log |ξ|)ε and ε is small.



Step 3: Separation
• If |rwξ|, |rvξ| ∼ (log |ξ|)2l and rw ̸= rv, by letting p, q ∈ Z as the

differences of 1:s and 0:s between the words w and v, then

|rwξ−rvξ| = |rvξ|
∣∣∣1−rw

rv

∣∣∣ ≥ |rvξ|(q log r1)
∣∣∣ log r0
log r1

−p

q

∣∣∣ ≳ (log |ξ|)l > 1.

• Thus ∀n ∈ Z, ∃ unique Nn ∈ N s.t. ∀w with rwξ ∈ [n, n+ 1) s.t.
rw = rNn

0 r
|w|−Nn

1 .
• Thus, as |w| ≳ (log |ξ|)c1 for some c1 > 0, we arrive to:

|µ̂(ξ)| ≲
∑
n∈Eξ

∑
|rwξ|∼(log |ξ|)2l

2−|w|1(rwξ ∈ [n, n+ 1)) + (log |ξ|)−2lκ(ε)

≲
∑
n∈Eξ

max
|rwξ|∼(log |ξ|)2l

2−|w|
(
|w|
Nn

)
+ (log |ξ|)−2lκ(ε)

≲ ♯Eξ(log |ξ|)−
c1
2 + (log |ξ|)−2lκ(ε)

≲ (log |ξ|)−c2

since
(
L
N

)
≲ 2LL− 1

2 , ∀N ≤ L and ♯Eξ ≲ (log |ξ|)ε and ε is small.


