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Dispersion-related description of temperature dependencies of band gaps in semiconductors
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We have developed a novel dispersion-related model for monotonic temperature dependencies of fundamen-
tal band gaps,Eg(T), and the associated excitonic absorption and emission line positions,Egx(T), which is
suitable for detailed numerical analyses of experimental data available for a large variety of semiconductor
~including wide-band-gap! materials and quantum-well structures. The present model is distinguished from
preceding ones by the following features:~i! It is applicable to an unusually large span of magnitudes for the
phonon dispersion coefficient,D[A^(\v2\v̄)2&/\v̄, extending from the familiar Bose–Einstein regime of
vanishingdispersion,D>0, up to the limiting regime ofextremely largedispersion,D<1. ~ii ! The resulting
analyticalE(T) functions approach, in thecryogenicregion,quadraticasymptotes, the curvatures of which are
throughout significantlyweakerthan suggested by Varshni’sad hocmodel.~iii ! The novel analytical expres-
sions enable direct, straightforward determinations of theT→0 limits of gap widths, the high-temperature
limits of slopes, the average phonon temperatures,Q[\v̄/kB , and the associated dispersion coefficients,D,
without requiring preliminary determinations of other~auxiliary! quantities. Results of least-mean-square fit-
tings for a variety of group IV, III–V, and II–VI materials are given and compared with those obtained in
previous studies using less elaborate models. The parameter sets obtained suggest that the physically realistic
range of dispersion coefficients is confined to an interval from 0 up to amaximumof about 3/4. Another,
qualitatively different, dispersion-related model, which represents the hypothetical regime of extremely large
dispersion,D.1, is also developed in this paper solely for the sake of a detailed dispersion-related analysis of
Varshni’s model function. Our analytical and numerical study concludes thatVarshni’smodel is associated with
a hypotheticalcase ofextremely largedispersion characterized by a dispersion coefficient significantly higher
than unity,DV5(p2/621)21/251.245. This is in clear contradiction to empiricalD values that range below
unity. The relatively large discrepancy between the upper boundary of about 3/4 for realisticD values and the
high value ofDV>5/4 for Varshni’s model is the fundamental reason for the usual inadequacy~large degree of
arbitrariness! of parameter values resulting from conventional fittings ofE(T) data sets using Varshni’s for-
mula.

DOI: 10.1103/PhysRevB.66.085201 PACS number~s!: 78.20.2e, 71.20.Nr, 63.20.Kr
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I. INTRODUCTION

It is known from a wealth of experimental studies that t
widths of fundamental band gaps,Eg(T), for a large variety
of semiconductor materials~particularly of group IV, III–V,
and II–VI materials, including ternary and quaternary alloy!
decreasemonotonicallywith increasing lattice temperature
Such a temperature-induced shrinkage of the gap widt
seen in experiments by, e.g., a monotonic red shift of exc
absorption and emission peak positions,Egx(T), that are ob-
servable in bulk samples as well as in associated heteros
tures ~superlattices, quantum well structures, quantum d
etc.!. TheseT-dependencies change from relatively we
~apparently quadratic! ones in the cryogenic region to rela
tively strong ones~approaching linear asymptotes! at tem-
peratures higher than the effective Debye temperatur1

QD . The corresponding red shift is of considerable practi
importance particularly with respect to semiconductor
vices that are intended to operate within a relatively la
temperature interval~extending beyond room temperature!.
A prerequisite for good design of such systems is the av
ability of sufficiently comprehensive experimentalEg(T) or
Egx(T) data sets. In addition to reliable experimental info
mation, it is computationally convenient and theoretically
formative to develop an analytical framework that enab
one to perform numerical analyses~least-mean-square fits! of
0163-1829/2002/66~8!/085201~18!/$20.00 66 0852
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E(T) data sets on aphysically reasonablebasis. The problem
of constructing a corresponding analytical framework is o
viously not a simple one, because the gap shrinkage e
turns out to be, as a rule, the result of a superposition
contributions made by phonons with largely different en
gies ~beginning from the zero-energy limit for acoustic
phonons up to the cut-off energy for optical phonons!. A
particular aggravation of this theoretical problem is the f
that basic features of phonon dispersion that manifest th
selves, e.g., in the positions of prominent phonon ene
peaks and the relative weights of their contributions to
observableE(T) dependence, may vary significantly from
one material to the other. Thus, the analytical framew
must be flexible enough to account for these qualitativ
large differences in the features of phonon dispersion~re-
gimes of small, intermediate, or large dispersion! among dif-
ferent materials.

In recent years severaldispersion-relatedmodels that are
suitable for fittings ofEg(T) dependencies in various dispe
sion regimes have been presented. Among the qualitati
different analytical approaches published, the structura
simplest one has the form2

E~T!>E~0!2~aQp/2!@Ap 11~2T/Qp!p21#. ~1!
©2002 The American Physical Society01-1
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In this expression the parametera[S(`) represents theT
→` limit of the slope,S(T)[2dE(T)/dT ~5entropy3,4!,
Qp is comparable with~roughly equal to! the average pho
non temperature,2,5,6 Qp'Q[^\v&/kB , and the fractional
exponentp is related to the material-specific degree of ph
non dispersion,6 D[A^(\v2^\v&)2&/^\v&, by the ap-
proximate relation5 D'1/Ap221. It has been shown in Re
5 for a variety of group IV, III–V, and II–VI materials tha
this model function~1! ~‘‘ p-representation’’! provides best
fits of measuredE(T) data sets, with standard deviation
significantly smaller than those associated with Varshni’sad
hocmodel3,7 or expressions of Bose–Einstein type.8–16Simi-
larly successful have also been applications of Eq.~1! to
numerical fittings of temperature dependencies of exc
line positions measured in ternary compounds17,18 and quan-
tum well structures.19–23

However, a detailed assessment of the parameter set
sociated with a variety of least-mean-square fittings5,17–23us-
ing Eq. ~1! shows that, due to the relative simple analytic
structure~the approximate nature! of this model function, the
fitted parameter valuesQp and p often do not yield good
values for the two relevant lowest-order moments,6 ^\v&
[kBQ and ^(\v)2&[(11D2)(kBQ)2. Particularly in the
regime ofsmall dispersion,5,18,20,22p.3, the model-specific
temperature parameterQp tends to be about 20%lower than
the actual magnitude of the effective~average! phonon tem-
peratureQ ~cf. Sec. 3 of Ref. 5!. It is true that a moderate
underestimate ofQ values like that from Eq.~1! may not
have severe consequences for experiments~numerical simu-
lations, including inter- and/or extrapolations17,18 of re-
stricted data sets into adjacent temperature regions!, because
theE(T) curves calculated using Eq.~1! are almost indistin-
guishable from those resulting from more elabor
dispersion-related models.@Note that possible deviations o
comparable theoreticalE(T) values resulting from differen
dispersion-related models are usually limited to an orde
only 60.2 meV; cf. Ref. 20 and see below.# However, such
deviations ofQp from trueQ[^\v&/kB values are trouble-
some when estimating6 relative weights of the contribution
of different parts of the phonon spectrum~e.g., of prominent
acoustical and/or optical phonon peaks! to the measured
E(T) dependence. This is particularly true for estimations
the dependenceQ(x) of the effective~average! phonon tem-
perature on the composition ratio,x, for ternary compounds
such as Zn12xMgxSe,17 or AlxGa12xAs,18 whereQ(x) can
only roughly be estimated fromQp(x) values obtained by
fittings using thep-representation. This is the motivation b
hind devising models more elaborate than Eq.~1!.

An important partial solution of this problem was give
by a relatively easily solvable hybrid model,6,20 which is
based on choosing a normalized weighting function in
form of a linear combination of aconstantcomponent for
low-energy~acoustical! phonons with asingular component
for high-energy ~optical and short-wavelength longitudin
acoustical! phonons.6 Numerical fittings using the corre
sponding analyticalE(T) function6,20 ~‘‘ r-representation’’!
provided self-consistent values forQ and D. Unfortunately,
the applicability of ther-representation6,20 is a priori con-
fined to cases of moderate~small and intermediate! disper-
08520
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sion, 0<D<1/)50.577. This limitation precludes applica
tion of this model to certain materials~particularly to AlSb
and CdTe5,24! in the regime of large dispersion,D.1/).

It is the aim of the present article to develop a more co
prehensive and flexible dispersion-related model which
distinguished from preceding ones by the following featur

~1! The new model should apply to all physically releva
regimes of dispersion comprising the whole interv
from the Bose–Einstein limit~D→0! up to sufficiently
large magnitudes of the dispersion coefficient~i.e., the
experimentally relevant range24 of 0<D&3/4, at least!.

~2! The theoreticalE(T) function should tend in the cryo
genic region to aquadratic asymptote, i.e.,@E(0)
2E(T)#}T2 for T!QD , in accordance with basic the
oretical expectations7,25–27 as well as experimental ob
servations.

~3! The new model should be suited for the construction o
practicableanalytical expression that is capable of pro
viding accurate ~self-consistent! values for the
dispersion-related parametersQ andD.

~4! An important additional aim of the model is to be able
represent the finalE(T) expressionexplicitly in terms of
the model-independentparametersQ and D, instead of
requiring preliminary determinations of various mode
specific auxiliary quantities.6,24

The basis for the general semi-empirical theory2,6 for
monotonicE(T) dependencies is sketched briefly in Sec.
We develop in Sec. III a generalE(T) model which enables
above all, the derivation of analytical four-parameter expr
sions. We show that the total range of applicability of t
interpolation formula derived in Sec. III B extends from th
Bose–Einstein limit up to moderately large dispersion,
<D&3/4, which is sufficient for practical purposes. Usin
this novel four-parameter expression we determine in Sec
the basic parameter sets for a variety of materials.

In addition we perform in Sec. V a more detaile
dispersion-related analysis of Varshni’s model function3,7

We show that this conventional model is connected with
excessively large degree of phonon dispersion,DV>5/4,
which is outside the experimentally relevant range, 0<D
&3/4. Thus we conclude that Varshni’s model is genera
incapable of providing physically adequate interpretations
availableE(T) data sets.

II. SEMI-EMPIRICAL DESCRIPTION OF MONOTONIC
E„T… DEPENDENCIES

To understand our subsequent analytical expansions
sufficient to sketch briefly the analytical basis of the cor
sponding semi-empirical theory2,6 for monotonicE(T) de-
pendencies. This dispersion-related theory is in accorda
with the generally accepted observation that the gap shr
age effect in semiconductors is the result of thecumulative
effect of electron-phonon interaction~EPI! and thermal lat-
tice expansion~TLE!. It is based further on the observation6

that both types of contributions to the observableE(T) de-
pendence, that are made by the individual phonon modej q
1-2
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DISPERSION-RELATED DESCRIPTION OF . . . PHYSICAL REVIEW B 66, 085201 ~2002!
~j 5branch andq5wave vector, with phonon energies« j q
[\v j q!, are known to vary with lattice temperature just
the Bose–Einstein occupation factors,n̄(« j q ,T)
5@exp(«jq /kBT)21#21 ~for more details see Ref. 6 and p
pers quoted therein!. Taking together all contributions mad
by phonon modesj q with the same energy,« j q5«, we could
thus represent the resultingE(T) dependence by a uniqu
integral of the form6

E~T!5E~0!2E d« f ~«!•n̄~«,T!, ~2!

where the relevant spectral function is given by the su
f («)5 f EPI(«)1 f TLE(«), of qualitatively different compo-
nents due to both mechanisms, andn̄(«,T)5@exp(«/kBT)
21#21 represents the thermally averaged phonon occupa
number in the corresponding spectral region. Expanding
latter for high temperatures,T*QD , in the form of a Taylor
series, n̄(«,T)→kBT/«21/21«/(12kBT)2..., we see
readily that the high-temperature limiting magnitude of t
slope of theE(T) dependence~2! is given by the integral

a[2
dE~T!

dT U
T→`

5kB•E d«
f ~«!

«
. ~3!

For a variety of semiconductors and insulators, particula
of group IV, III–V, and most II–VI materials~including their
ternary and quaternary alloys as well as various other bin
or ternary compounds!, the spectral functionf («) in Eqs.~2!
and~3! can be inferred from measuredE(T) dependencies to
be essentially apositive semi-definitefunction of « through-
out thewholespectrum of phonon energies,f («)>0. @Note
that there are exceptions, e.g., ternary compou
Hg12xCdxTe, 0.17,x,0.5,28 wheref («) is obviously nega-
tive; or CuCl,29 where f («) changes its sign between th
sections of acoustical and optical phonons.# Consequently,
with respect to the numerous cases of semi-definitef («)
functions, it is convenient to introduce anormalized, positive
semi-definite weightingfunction defined by

w~«![
kBf ~«!

a«
, ~4!

@so that*d«w(«)51, in accordance with Eq.~3!#. In terms
of Eq. ~4! we can thus rewrite the integral~2! in the equiva-
lent form

E~T!5E~0!2
a

kB
E d«

w~«!«

exp~«/kBT!21
. ~5!

It is instructive to briefly consider some general features
the corresponding monotonicE(T) dependencies~5! for
ranges of relatively low~cryogenic! and high temperatures

A. Low-temperature behavior

Let us consider the weighting function~4! with respect to
a certainlow-energy region, i.e., for 0<«!kBQD at least
~corresponding to the edge region oflong-wavelength acous
tical phonons!, to be representable by a Taylor series,
08520
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n50

~`!
w~n!~0!

n!
«n ~6!

@where the coefficientsw(n)(0) represent thenth order de-
rivatives of w(«) at «50#. Inserting Eq.~6! into Eq. ~5!,
going to a dimensionless integration variablez[«/kBT, and
observing that, forT!QD , the integrals for the individua
«n terms can be well approximated by

E
0

`

dz
zn11

ez21
5~n11!! z~n12!, ~7!

@where the low order values of Riemann’sz-functions are
z(2)5p2/651.645, z(3)51.202, z(4)5p4/9051.082,...#,
we come to a series expansion of the form

E~T!→E~0!2
a

kB
(
n50

~`!

~n11!z~n12!w~n!~0!~kBT!n12.

~8!

This means that theE(T) dependence in theT→0 limit is
dominated by aquadratic asymptote,E(T)→E(0)2w(0)
3(p2/6)akBT2, provided that the weighting function~4! is
nonvanishingin the «→0 limit, w(0).0.

The occurrence of a quadratic low temperature asymp
had already been predicted many years ago in several t
retical studies.25–27 Unfortunately, this was misrepresente
later in Varshni’sad hoc formula3,7 ~for more details see
Secs. IV and V!. Nevertheless, the expectation of an ess
tially quadratic low-temperature asymptote seems to be
accordance with experimental observations for a large v
ety of materials~cf. in particular Ref. 6 and see below!. Thus
we have a good chance of coming to an adequate analy
model forE(T) dependencies if we chose for thew(«) de-
pendence in Eq.~5! a model function which, apart from vari
ous other details~cf. Sec. III and Appendices A and B!, is
generally nonvanishingin the zero phonon energy limit,
w(0).0.

B. Intermediate- to high-temperature behavior

Consider now the argumentx[«/kBT of the exponential
function @in the denominator of the integral~5!# for the
whole spectrum of phonon energies, 0<«&kBQD , to be
smaller than 2p. Accordingly we can represent the corr
sponding terms of the integrand in Eq.~5! by a Taylor ex-
pansion of typex/(ex21)512x/21x2/122x4/7201... .
The E(T) dependence~5! reduces thus, forT.QD/2, to a
series expansion of the universal form6

E~T!5E~0!2
a

kB
•S kBT2

^«&
2

1
^«2&

12kBT
2

^«4&
720~kBT!3

1
^«6&

30 240~kBT!52...D , ~9!

where we have denoted by

^«m&[E d««m
•w~«!, for m51,2,4,6,..., ~10!
1-3
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R. PÄSSLER PHYSICAL REVIEW B 66, 085201 ~2002!
the associated moments of the total phonon energy spect
The position of the center of gravity (m51) with respect to
the temperature scale is represented in analyticalE(T) mod-
els by an effective~average! phonon temperature,

Q[^«&/kB . ~11!

The occurrence of phonon dispersion, which is expresse
the difference between the second moment and the squa
the first moment, can be conveniently quantified by the d
persion coefficient6

D[A^«2&2^«&2/^«&. ~12!

In terms of these basic, dispersion-related parametersQ ~11!
andD ~12! we can rewrite the low order part~up to the 1/T
term! of the series expansion~9! in the equivalent form

E~T!→E~0!2aS T2
Q

2
1

~11D2!Q2

12T D . ~13!

III. REPRESENTATIVE ANALYTICAL MODEL

For a perfect~nonapproximate! numerical description of
theE(T) dependence it would be necessary to know in de
the weighting function,w(«), throughout the whole phono
spectrum of a given material. Such detailed microscopic
formation is usually not available. Moreover it is obviou
that, except for the idealized model representation6,24 of
w(«) by discrete~d-functionlike! peaks, exact calculations o
integrals of type~5! are, as a rule, very cumbersome a
time-consuming for any more realistic form of the weighti
function. In view of the unsuitability of such a rigorous pr
cedure, for many practical purposes it is thus useful and
ficient to approximatew(«) by a somewhat simpler, analyt
cal model function.

A convenient model for a normalized weighting functio
w(«), which will be seen below to reasonably satisfy t
series of requirements quoted in Sec. I, is given by a clas
functions of typews(«)}(12«/«o)s21 ~A1!, wheres.0
@for « up to a certain cut-off energy, 0<«<«o , andws(«)
50 elsewhere; see Fig. 1 and Appendix A#. For a parameter
range of 0,s,1 the model functionsws(«) ~A1! are mo-
notonously increasing, with increasing« ~cf. Fig. 1!. The
associated dispersion coefficients follow from Eq.~A4! to lie
within the range 0,D,321/2, which corresponds to the re
gime ofmoderate~small to intermediate! dispersion.6 On the
other hand, for a parameter range of 1,s,1`, the model
functionsws(«) ~A1! are monotonouslydecreasing, with in-
creasing« ~cf. Fig. 1!. From Eq. ~A4! it follows that the
corresponding dispersion coefficients lie within a range
321/2,D,1. The class of model functions~A1! thus also
comprises a relatively broad section of the regime oflarge
dispersion.@Note that the total interval ofD values com-
prised by the present model, 0<D,1, is thus even more
extensive than the experimentally relevant interval of ab
0<D&3/4; cf. point~1! in Sec. I.#

Inserting the model functionws(«) ~A1! into Eq. ~5! and
including Eq.~A5! we can write theE(T) dependence~5! in
a general form
08520
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E~T!5E~0!2
aQ

2
hS 2T

Q D , ~14!

where the characteristic~dimensionless! shape functionsh
are defined, in terms of the dimensionless ratioj[2T/Q and
the parameters.0, by integrals of the form~A6!. The be-
haviors of these shape functionshs(j) in the limiting re-
gions of low and high temperatures@corresponding to
j-regions ofj,~s11!/10 andj.~s11!p# are given by the
analytical expressions~A7! and ~A8!, respectively.

A. Analytical approximation for moderate and large
dispersion „1Õ3›DË1…

Both limiting behaviors represented by Eqs.~A7! and
~A8! can be readily seen to be satisfied by an analytical
satz of the form

hD~j!5A6 11 (
n52

4

an~D!jn1j621, ~15!

where the second and fourth order expansion coefficients
given by

a2~D!5p2D2/~11D2! and a4~D!52~11D2!. ~16!

FIG. 1. «-dependencies of monotonicallyincreasingor decreas-
ing weighting functions of type~A1!, for various discrete paramete
valuess,1 and s.1, for moderate~small to intermediate!, and
large dispersion, respectively.
1-4
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DISPERSION-RELATED DESCRIPTION OF . . . PHYSICAL REVIEW B 66, 085201 ~2002!
The remaining third order coefficienta3(D) affects the be-
havior of the approximate shape function~15! especially in
the range from low to intermediate temperatures~corre-
sponding toj-values of the order of unity, Fig. 2!. A reason-
able analytical approximation for the latter can thus be fou
by requiring that the analytical formula~15! represents a
good approach to the original integral~A6! particularly in
this region of intermediatej values. By comparing result
obtained via numerical integration@using Eq.~A6!, for 1,s,
or ~A12!, for 0,s,1# with approximate results from Eq
~15! we have found that adequate approximations fora3(D)
are given by

a3~D!>124D213D4, for 1/3,D<1/& ~17a!

and

a3~D!>~123D2!/2, for 1/&<D,1. ~17b!

FIG. 2. Characteristic shape functionshD(j) for intermediate
and large dispersion, 0.3<D<1. The approximate values following
from the sixth root representation~15! @with coefficientsan(D)
given by Eqs.~16! and~17!# are nearly equal to exacths(j) values
obtained by numerical integration of Eqs.~A12!, ~A6!, or ~B6!, for
0,s,1, 1,s,`, ands→`, respectively. A numerical compariso
of a shape function of Varshni type,hV(j)[j2/(11j), with a
shape functionhg(j) ~B11! resulting from a weighting function
model of type~B7! is also included. The approximate equality
both functions, for a parameter value ofg55.5, shows that Varsh
ni’s model corresponds to an excessively large~physically unreal-
istic! D of about 1.25@according to Eq.~B9!#.
08520
d

This coefficient reduces thus to zero,a3(Dc)→0, just at the
point of transition,D→Dc5321/2, between the regimes o
intermediate and large dispersion. Note that both appro
mate expressions,~17a! and~17b!, for the third order coeffi-
cient give the same value,a3(221/2)521/4, for D5221/2

50.707, and that its magnitudes aresmall throughout in
comparison with those of the fourth order coefficient~16!,
2<a4(D)<4.

We have plotted in Fig. 2 a series ofhD(j) curves fol-
lowing from Eq. ~15!, with D-dependent expansion coeffi
cients given by Eqs.~16! and ~17a/b!, for equidistantD val-
ues pertaining to the regimes of intermediate and la
dispersion. The bold circles in Fig. 2 represent the ex
values obtained by numerical integration of the first vers
of Eq. ~A6!, for 1<s, or Eq. ~A12!, for 0,s,1. The com-
parison of the latter with approximate results~solid curves!
in Fig. 2 shows that, due to the specification of expans
coefficients by Eqs.~16! and ~17a/b!, the sixth root expres-
sion ~15! is a good approximation to the characteristic sha
functions for dispersion coefficients within a range of abo
1/3,D,1, at least.

Replacing, henceforth, the original~exact! shape function
hs(j) ~A6! @5~A12!# in Eq. ~14! by hD(j) ~15! we can
describe theE(T) dependencies, for regimes ofintermediate
and large dispersion, to a good approximation by an analy
cal expression of the form

FIG. 3. Characteristic shape functionshD(j) for small, interme-
diate, and moderatelylarge dispersion, 0<D<0.7. The approximate
values from the elaborate interpolation formula~20! ~with coeffi-
cientscn(D) given by Eqs.~21! and~22!! are nearly equal to exac
hs(j) values obtained by numerical integration of Eq.~A12! or
~A6!, for 0,s,1 and 1,s,2, respectively.
1-5
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E~T!5E~0!2
aQ

2

3SA6 11 (
n52

4

an~D!S 2T

Q D n

1S 2T

Q D 6

21D .

~18!

B. Overall formula for small, intermediate, and larger
dispersion „0ÏD›3Õ4…

Analytical models of Bose–Einstein type8–16 represent
the limiting case of vanishing dispersion,D→0. The charac-
teristic shape function for this limit,hB(j)[hD→0(j), has
the form5

hB~j!5
2

exp~2/j!21
5cothS 1

j D21. ~19!

The latter is obviously not coincident with theD→0 limit of
Eq. ~15!. This is why a mere root representation like Eq.~15!
does not give good results for the regime of small dispers
0<D,1/3. The latter regime is only rarely seen5,24 in bulk
samples of elemental and binary materials; however it
been found recently in certain ternary compounds18 and
heterostructures.20,22 Thus, it is desirable for practical appl
cations to find a more general analyticalE(T) representation
that will give good results within the entire interval of di
persion coefficientsD relevant to experiments~i.e., from 0
up to about 3/4, at least!.

Such an analytical approximation can be constructed
the alternative ansatz

hD~j!5
2~123D2!

exp~2/j!21

13D2SA6 11 (
n52

4

cn~D!jn1j621D , ~20!
an
di

f
-
tu
p
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where theD-dependent second and fourth order expans
coefficients are given by

c2~D!5p2/~3~11D2!! and c458/3. ~21!

We see that in the Bose–Einstein limit,D→0, the hD(j)
ansatz~20! coincides with the characteristic Bose–Einste
shape functionhB(j) ~19!. Furthermore we find readily, by
expanding the expression~20! for the limiting regionsj!1
andj.1 into a Taylor series, that the corresponding asym
totes actually coincide with Eqs.~A7! and~A8!, respectively.

To determine, approximately, theD dependence of the
coefficient c3(D) we have done comprehensive numeric
comparisons~Fig. 3! between exacths(j) values obtained
via numerical integration@in Eqs. ~A6! or ~A12!# and ap-
proximatehD(j) values following from Eq.~20!. In this way
we have found an adequate approximation forc3(D) to be
given by

c3~D!>~3D221!/4. ~22!

The corresponding shape functions~20! are plotted for a se-
ries of equidistant values of the dispersion coefficient in F
3. The comparison of thesej-dependencies~solid curves!
with exact values~dots! due to Eq.~A6! or ~A12! shows that
Eq. ~20! represents, in fact, a good analytical approximat
within the whole interval 0<D<0.7 ~at least!, i.e., from com-
pletely vanishing up to moderately large dispersion. Repl
ing, finally, the original~exact! shape functionhs(j) ~A6! in
Eq. ~14! by the analytical approximationhD(j) ~20! we can
represent, henceforth, theE(T) dependence explicitly in the
form
E~T!5E~0!2aQH ~123D2!

exp~Q/T!21
1

3D2

2 SA6 11
p2

3~11D2! S 2T

Q D 2

1
3D221

4 S 2T

Q D 3

1
8

3 S 2T

Q D 4

1S 2T

Q D 6

21D J .

~23!
t to

s

-

d di-

of
ns
f

Comparing the latter representation with Eq.~18! we see that
both analytical approximations are just coincident at the tr
sition point between the regimes of moderate and large
persion,D→Dc5321/2.

IV. SAMPLE RESULTS AND DISCUSSION

On the basis of a physically reasonable model ansatz
the spectral~weighting! function we have derived two elabo
rate four-parameter expressions for monotonic tempera
dependencies of fundamental or excitonic energy ga
Eg(T) or Egx(T), of semiconductors~including wide-band-
-
s-

or

re
s,

gap materials! and associated heterostructures. In contras
earlier dispersion-related models,2,6,20,24 applications of
which generally involve preliminary estimations of variou
model-specific auxiliary quantities, the final analyticalE(T)
expressions derived in the present paper, Eqs.~18! and~23!,
are givenexplicitly in terms of the dispersion-related param
eters Q ~11! and D ~12! @in combination witha ~3! and
E(0)#. These basic parameters can hence be determine
rectly via least-mean-square fittings of givenE(T) data sets.

The qualitative difference in the analytical structures
the two alternativeE(T) expressions derived in Subsectio
III A and III B is closely related to their specific ranges o
1-6
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TABLE I. Dispersion-related parameters from numerical fittings of experimentalEg(T) ~funda-
mental band gap! or Egx(T) ~exciton peak! data available for various group IV, III–V, and II–VI materia
using Eq.~23!.

Material Ref.
Tmin4Tmax

~K!
a/1024

~eV/K!
Q

~K! D
aQ/2
~meV!

Diamond 30 103 to 660 ~5.0! ~1335! ~0.11! ~334!
SiC ~15R! 31 6 to 645 4.67 919 0.32 215

Si 32,33 2 to 415 3.23 446 0.51 72
Ge 34 4 to 416 4.13 253 0.49 52

AlN 35 4 to 298 ~9.1! ~770! ~0.34! ~350!
AlAs 36 4 to 287 3.90 256 0.48 50
AlSb 37 4 to 298 3.45 205 0.76 35
GaN 38 2 to 1067 6.14 586 0.40 180
GaP 39,40 4 to 680 4.77 355 0.60 85

GaAs 41,42 2 to 673 4.77 252 0.43 60
GaSb 43,44 9 to 300 3.87 205 0.44 40
InN 45 4 to 300 ~2.3! ~590! ~0.35! ~68!

InP 46,47 4 to 873 3.96 274 0.48 54
InAs 48 10 to 300 2.82 147 ~0.68! 21
InSb 48,49 10 to 550 2.54 155 ~0.36! 20

ZnS 50 2 to 541 5.49 285 0.37 78
ZnSe 50 4 to 500 5.00 218 0.36 55
ZnTe 50 2 to 291 4.68 170 0.37 40
CdS 51/54 2 to 289 4.10 166 0.47 34
CdSe 55 15 to 550 4.08 187 ~0.20! 38
CdTe 56 2 to 300 3.08 104 0.69 16
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applicability. As we have concluded above from Figs. 2 a
3, Eqs.~18! and~23! represent good~self-consistent! analyti-
cal approximations to the original integrals~5! for dispersion
coefficients within ranges of about 1/3&D,1 or 0<D&3/4,
respectively. Favorable for many practical applications is
relatively largeoverlap, 1/3&D&3/4, between the respectiv
ranges of applicability, whereboth formulas give essentially
thesameresults~for some typical examples see below!. This
overlap gives us for many materials, among other things,
opportunity to assess the degree of reliability~unambiguous-
ness! of the outcomes of least-mean-square fitting proces
by comparing the results obtained alternatively from E
~18! and ~23!. Concerning the remainingD-regions outside
~above or below! this overlap it is important to note tha
until now, we could not find any material or heterostructu
whose dispersion coefficient appeared to be significa
higher than 3/4. However, there have been found alre
several materials and heterostructures whose dispersion
efficients are indicative of small dispersion,18,20,220<D,1/3
@which is not covered satisfactorily by Eq.~18!#. That is, all
D values estimated hereto from measuredE(T) data sets
lie within the range of applicability of Eq.~23!, 0<D&3/4
~cf. Refs. 2, 6, 20, 24 and see Table I!. Consequently, Eq
~23! is of primary importance@superior to Eq. ~18!#
with respect to numerical analyses of a multitude of mo
tonic E(T) dependencies associated with qualitatively d
ferent dispersion regimes that are actually found
experiment.
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In order to compare results of the present model w
earlier ~approximate or partial! results due to the
p-representation,5 the r-representation,6 and/or the two-
oscillator model24 we performed least-mean-square fittin
of the same experimental data sets for group IV,30–34

III–V, 35–49and II–VI materials,50–56by Eq.~23!. The result-
ing sets of parametersa ~3!, Q ~11!, andD ~12! are listed in
Table I. The associated zero temperature positions,Eg(0) or
Egx(0), are notreported because these positions calcula
by Eq. ~23! are essentially the same~except for tiny numeri-
cal differences of order60.1 meV! as those obtained usin
the earlier~less elaborate! dispersion-related models.5,6,24 In
the last column of Table I we have listed the magnitudes
the correspondingT50 renormalization energies,57 which
are given by the energy separations,aQ/2, between the fitted
E(0) positions and the points of intersection of the line
T→` asymptotes,E`(T)5E(0)2a(T2Q/2), with the en-
ergy axis,E`(0)5E(0)1aQ/2, ~cf. Fig. 1 in Ref. 6!.

According to our semi-empirical description of monoton
E(T) dependencies, there is amonotonicrelationship~A7!
between the relative magnitude ofdispersion, D ~12!, on the
one hand, and the magnitude of thecurvatureof the charac-
teristic low temperature asymptotes,hD(j!1) ~cf. Figs. 2
and 3!, on the other hand. Because to this, the quadr
dependence in the cryogenic region for a given material g
erally tends to be stronger as the dispersion coefficient
larger. An instructive example of this is provided by comp
ing the experimentalE(T) data fields for the indirect gap
1-7
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R. PÄSSLER PHYSICAL REVIEW B 66, 085201 ~2002!
III–V materials AlAs36 and AlSb37 ~see Figs. 4 and 5, respe
tively!. The corresponding temperature dependencies of
indirect excitonic gap in both materials are given in terms
threshold energies of TA, LA, TO, and LO phonon assis
transitions~where the indices ‘‘e’’ and ‘‘ a’’ correspond to
processes of phonon emission and absorption, respectiv!.
Taking the corresponding phonon energies to be essent
constantwithin the temperature regions of consideration
,T,300 K) we have performed, consequently,simulta-
neous fittings of the E(T) curves by aunique material-
specific set of dispersion-related parametersa, Q, andD, in
combination with a set of separate zero temperature p
tions,Ei(0), for theindividual phonon assisted transitions

In the case of AlAs~Fig. 4! we have obtained from fittings
by Eq. ~23! the parameter valuesa53.9031024 eV/K,
Q5256 K, and D50.48 ~Table I! in combination
with ELOe(0)52.2792 eV, ETOe(0)52.2705 eV, ELAe(0)
52.2563 eV,ETAe(0)52.2426 eV, andEgx(0)52.2297 eV
for the individual phonon emission processes and the e
tonic gap ~no-phonon transitions!. The extrapolated zero
temperature positions for phonon-absorption assisted tra
tions areETAa(0)52.2153 eV andELAa(0)52.1783 eV. An
alternative fit of the whole data field by Eq.~18! gave ap-

FIG. 4. Temperature dependence of the indirect excitonic b
gap,Egx , and of several threshold energies of phonon-assisted t
sitions observed by Monemar~Ref. 36! near theG15v2X1c edge of
AlAs. The subscripts ‘‘e’’ and ‘‘ a’’ stand for transitions involving an
emission or absorption of a LO, TO, LA, or TA phonon. The curv
are a comprehensive numerical fit of thewholedata field using Eq.
~23! with a uniqueconstellation of basic dispersion-related para
etersa, Q, andD ~cf. Table I!.
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proximately the sameT→0 positions~higher by about 0.1
meV! in combination with basic parameters ofa53.91
31024 eV/K, Q5258 K, andD50.50. The small difference
of only 0.3%, 0.8%, and 4% between the magnitudesa, Q,
and D, respectively, as resulting from the alternative fits
Eq. ~18! vs Eq. ~23!, represents the internal consistency
the analytical apparatus developed in Sec. III within the
gime of intermediate dispersion, 1/3,D,1/).

For AlSb ~Fig. 5! we obtained from fittings by Eq.~23!
the parameter valuesa53.4531024 eV/K, Q5205 K,
and D50.76 ~Table I! in combination with ELOe(0)
51.7256 eV, ETOe(0)51.7203 eV, ELAe(0)51.7057 eV,
ETAe(0)51.6951 eV, ETAa(0)51.6793 eV, ELAa(0)
51.6683 eV,ETOa(0)51.6538 eV,ELOa(0)51.6473 eV for
the individual phonon emission and absorption proces
From this set of zero temperature threshold positions th
follows a value ofEgx(0)51.6869 eV for the excitonic gap
~no-phonon transitions!. An alternative fit of the whole data
field by Eq.~18! gave again nearly the sameT→0 positions
~lower by 0.1 meV! in combination with the basic paramete
valuesa53.4231024 eV/K, Q5199 K, andD50.74. The
moderate difference of about 1% to 3% between the ma
tudes ofa, Q, andD for Eq. ~18! vs. Eq.~23! confirms the
compatibility of both analytical approximations even for th

d
n-

-

FIG. 5. Temperature dependence of the threshold energie
indirect phonon-assisted transitions observed by Alibertet al. ~Ref.
37! near theG15v2D1c edge of AlSb. The subscripts ‘‘e’’ and ‘‘ a’’
stand for transitions involving an emission or absorption of a L
TO, LA, or TA phonon. The curves are a numerical fit of thewhole
data field using Eq.~23! with a unique constellation of basic
dispersion-related parametersa, Q, andD ~cf. Table I!.
1-8
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DISPERSION-RELATED DESCRIPTION OF . . . PHYSICAL REVIEW B 66, 085201 ~2002!
case of large dispersion,D.1/).
By comparing now, in more detail, the low-temperatu

sections of theE(T) curves for both materials, we observe
markedly weaker curvature~second derivative! for AlAs
~Fig. 4! than for AlSb~Fig. 5!. This qualitative difference in
curvatures is directly connected with the quantitative diff
ence between the drops of the respective excitonic gaps m
sured in the cryogenic region. We see, e.g., from Figs 4
5 that the dropsE(0)2E(50 K) amount to about 2.4 meV
and 4.6 meV, for AlAs and AlSb, respectively. The relative
large difference~by a factor of about 2! can be readily un-
derstood to be a consequence of the largely different ma
tudes of the dispersion coefficient in both materials. To t
end, we consider the analytical form of the low-temperat
asymptote which, according to Eq.~23! or ~18! @as well as
Eq. ~14! in combination with Eq.~A7!#, reduces to the qua
dratic dependence

E~T!→E~0!2cT2,

where c[2
1

2

d2E~T!

dT2 U
T→0

5
p2D2a

3~11D2!Q
.

~24!

Inserting thea, Q, andD values listed for both materials i
Table I we obtain for the curvature coefficient the valuesc
50.9531026 eV/K2, for AlAs, andc51.8531026 eV/K2,
for AlSb. The difference of a factor of about 2 between t
curvature coefficientsc ~24! explains the corresponding dif
ference inE(T) drops measured for these materials in t
cryogenic region. At the same time we find that the rat
a/Q @occurring as proportionality factors inc ~24!# are 1.52
31026 eV/K2 for AlAs and 1.6931026 eV/K2 for AlSb,
which corresponds to a difference of only about 11%
tween these materials. This means that it is the differe
between thedispersioncoefficientsD of about 0.48 for AlAs
and 0.76 for AlSb which, by virtue of the dispersion-relat
factor D2/(11D2) ~in Eq. ~24!! of about 0.19 for AlAs and
0.37 for AlSb, represents themain cause for the relatively
large difference between the respective magnitudes ofE(0)
2E(50 K) drops. In this connection it is worth noting tha
except for AlSb~and possibly still for InAs, where the avai
ableE(T) data48 are too sparse for an unambiguous quan
fication!, the material-specificE(0)2E(50 K) drops forall
other III–V materials listed in Table I aresmaller than 3
meV. We can thus look upon AlSb as an extreme case, w
the significantly strongerE(0)2E(50 K) drop compared to
other III–V materials is due to an exceptionally large deg
of dispersion,D'3/4. As we see from Table I, this valu
represents the maximum among theD values obtained for al
group IV, III–V, and II–VI materials considered. Accordin
to Eq. ~A4!, a dispersion coefficient of orderD'3/4 is asso-
ciated with an order ofs'5/2 for the model-specific param
eter in Eq.~A1!. This corresponds to a stronglydecreasing
weighting function,w(«)}(12«/«o)3/2 ~cf. Fig. 1!, indicat-
ing an unusually strong contribution oflow-energy~acousti-
cal! phonons to the gap shrinkage effect in AlSb~in accor-
dance with Ref. 24!.
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We should note that some of the material-specific para
eter sets in Table I are still relatively uncertain. These
given in parentheses. This is mainly due to:~1! the relative
sparsity and/or in-accuracyof experimental data points in
the cryogenic region ~e.g., for diamond,30 AlN,35 InN,45

InAs,48 InSb,48 and CdSe,55 which involve uncertainties in
the dispersion coefficientD of up to 20%! and/or~2! limita-
tions of experimental measurements to temperatures con
erably lower than the corresponding Debye temperature~to
T,300 K, for AlN35 and InN,45 which involve uncertainties
up to 20% for the limiting slopea and the effective phonon
temperatureQ!.

For most materials listed in Table I~except for nitrides!,
the uncertainties ina andQ values are generally limited to
few percent. This applies in particular to Ge,34 GaAs,41,42

GaSb,43,44 InP,46,47 InAs,48 InSb48,49 as well as to zinc and
cadmium chalcogenides,50–56 where the experimental mea
surements managed to be extendedbeyondthe Debye tem-
peratures. Fitting the data sets for the latter cases by u
Eq. ~18! gavea andQ values different from those in Table
@of Eq. ~23!# by less than 0.5% and 1.5%, respectively.

It is necessary that measurements be made up to the
cinity of the effective Debye temperatures, i.e
Tmax*QD ,50,58 to enable a reliable determination ofa andQ
governing the high-temperature behavior, Eq.~13!. This can
be well illustrated by the differentEg(T) and Egx(T) data
sets available for silicon. We have reproduced in Fig. 6~a! the
Eg(T) and Egx(T) data points given in Refs. 32 and 3
respectively. The simultaneous fit of both data sets using
~23! gave the parameter valuesa53.2331024 eV/K,
Q5446 K, and D50.51 @in combination with a zero-
temperature position ofEg(0)51.1701 eV for the funda-
mental band gap, and an extrapolated value ofEgx(0)
51.1564 eV for the excitonic gap#. An alternative fit by Eq.
~18! gave the sameT→0 positions with parameter value
a53.1531024 eV/K, Q5423 K, andD50.50. Comparing
both parameter sets we notice differences of about 3%,
and 2% between the magnitudesa, Q, andD, respectively.
Similarly small differences are also found with respect
earlier fittings of the same data@Fig. 6~a!# using the
r-representation6 or the two-oscillator model.24 At the same
time we must observe that, in contrast to the above requ
ment ofTmax*QD , the experimental cut-off temperature33 of
Tmax5415 K for theEgx(T) data set@cf. Fig. 6~a!# is consid-
erably lower than the effective Debye temperature,1 QD
'670 K, in Si. This means that, even with good agreem
between fittings of different dispersion related models, tha
and Q values estimated hitherto can not yet be conside
definitive.

The degree of uncertainty due to the limitation toT
<415 K of theEgx(T) data set of Ref. 33 can be estimate
by examining otherEgx(T) data sets for Si, e.g., in Refs. 5
and 60, which cover significantly higher temperatures. T
is done in Figs. 6~b! and 6~c!, in which we see that the tota
energy gap shift from 0 to 800 K amounts to about 0.18
and 0.20 eV. This corresponds to a difference of about 1
between the estimated magnitudes of limiting slopesa
~Table II!. According to Ref. 60, the magnitude of temper
ture variation of the gap was somewhat underestimated
1-9
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FIG. 6. Fittings of variousE(T) data sets available for silicon using Eq.~23!. The insets show typical errors in the cryogenic region t
arise from the Bose–Einstein model~25! and Varshni’s formula~26!. ~a! Fundamental band gap data,Eg(T), given by Bludauet al. ~Ref.
32; dots! and excitonic gap data,Egx(T), given by Macfarlaneet al. ~Ref. 33; circles!. ~b! Excitonic gap shift data,Egx(0)2Egx(T), given
by Hartunget al. ~Ref. 59!. ~c! Excitonic gap shift data,Egx(0)2Egx(T), given by Alexet al. ~Ref. 60!.
085201-10



DISPERSION-RELATED DESCRIPTION OF . . . PHYSICAL REVIEW B 66, 085201 ~2002!
TABLE II. Parameter sets obtained for silicon by fittings of the gap shift data of~a! Refs. 32 and 33@cf. Fig. 6~a!#, ~b! Ref. 59@cf. Fig.
6~b!#, and ~c! Ref. 60 @cf. Fig. 6~c!# using the dispersion-related four-parameter formula~23! compared withaB andQB values from the
Bose–Einstein expression~25! andaV andb values of Varshni’s formula~26!.

Refs. Fig.
a/1024

~eV/K!
Q

~K! D
aB/1024

~eV/K!
QB

~K!
aV/1024

~eV/K!
b

~K!

32, 33 6~a! 3.23 446 0.51 2.82 351 5.37 746
59 6~b! 3.02 440 0.61 2.87 381 3.36 357
60 6~c! 3.33 440 0.40 3.26 415 3.81 392
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Ref. 59@Fig. 6~b!# due to an insufficient line shape analys
procedure. One can see also from Fig. 6~c! that thea value
detected from the data set of Ref. 60 has an uncertaint
about 5% due to the relatively large uncertainties~up to
about 15 meV! of the experimental data in the region b
tween 700 K and 800 K. The three differenta values~Table
II ! taken from the three data sets of Figs. 6~a! to 6~c! yield
thus the limiting slope in Si of abouta>(3.260.2)
31024 eV/K ~with a remaining uncertainty of about 6%!.

For the effective phonon temperature,Q, we see from
Table II that the estimated magnitudes are nearly the s
for all three data sets. However, this approximate equa
might be accidental. The above mentioned alternative fi
the data of Refs. 59 and 60@Fig. 6~a!# using Eq.~18! gave a
value of Q5423 K ~which is equal to that obtained by a
earlier analysis using ther-representation6!. Summarizing all
the results for silicon, we come to an approximate value
Q>~440620! K for the effective phonon temperature. Th
associated dispersion coefficient amounts toD>~0.560.1!
~Table II!. The relatively large range of uncertainty inD is
due to the scatter in the experimental points of Refs. 59
60 @insets to Figs. 6~b! and 6~c!# in the cryogenic region.

E(T) data analyses performed using a dispersion-rela
~four-parameter! analytical model like the present one~Sec.
III ! are, as a rule, physically reasonable and numeric
much more accurate than those applying a conventio
~three-parameter! model like Varshni’s formula3,7 or a Bose–
Einstein expression.8–16 The latter represents the limitin
case of completely vanishing dispersion,D→0. It corre-
sponds thus to a reduction of Eq.~23! to the limiting form2,5

E~T!→E~0!2
aBQB

exp~QB /T!21

5E~0!2
aBQB

2 FcothS QB

2T D21G . ~25!

This model shows aplateau in the cryogenic region,T
,50 K, which is seen from the insets to Figs. 6~a! to 6~c! to
be in clearcontradictionto the approximatelyquadraticde-
pendence, (E(0)2E(T))}T2 ~24!, observed in this region
~not only for Si, but also for most other materials listed
Table I; cf. Ref. 5!. From Table II we see that, for any one
the three data sets in consideration, the fitted magnitude
the Bose–Einstein parameters,aB andQB , are considerably
smaller, aB,a and QB,Q, than their dispersion-relate
counterpartsa ~3! andQ ~11!. Note that the relative under
estimation of the limiting slope,a, and of the effective pho-
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non temperature,Q, by Eq. ~25! reaches 13% or 21%, re
spectively, for the data set in Fig. 6~a!. ~For a discussion of
the analogous underestimation of both quantities for hexa
nal GaN see Ref. 58.! Furthermore we see from Table II tha
the changes ofaB and QB values from case to case@Figs.
6~a! to 6~c!# are considerably larger than the respect
changes of the associateda and Q values. This increase o
parameter uncertainties arising from Eq.~25! @in comparison
with Eqs. ~23! or ~18!# is plausible, in view of the obvious
inadequacy of a model that assumesvanishingdispersion,
DB50, especially when it is applied to a material like silico
that shows a relatively large degree of phonon dispers
D>0.5 ~cf. Tables I and II!.

Consider finally Varshni’s ad hoc formula,3,7

EV~T!5E~0!2
aVT2

b1T
. ~26!

Within this model, the parameteraV should again represen
the limiting slope, and the magnitude of the parameterb is
commonly believed to be comparable3,7 with the Debye tem-
perature.~For a detailed analytical study of this model s
Sec. V.! With respect to the low-temperature region ofT
!b we see thatEV(T) ~26! tends to aquadraticasymptote58

EV~T!→E~0!2cVT2, ~27!

wherecV[aV /b represents the model-specific curvature c
efficient @the counterpart to the coefficientc in Eq. ~24!#.
However, many numerical applications have shown that
magnitude of the dispersion-related curvature coefficienc
~24! is ~for 0<D&3/4, at least! significantlysmaller than its
counterpartcV ~27! associated with Varshni’s parameter va
uesaV andb. This inequality between curvature coefficien
c,cV , for the low temperature asymptotes, Eq.~24! vs Eq.
~27!, explains why experimentalE(T) data and calculated
EV(T) curves in the cryogenic region almost never coinc
@insets to Figs. 6~a! to 6~c!#. These systematic deviations a
closely related to the enormous numerical uncertainties~in-
stabilities! of Varshni’s parameter valuesaV and b. We see
from Table II, e.g., that theaV andb values for the data set
shown in Figs. 6~a! and 6~c! differ by factors of about 1.4
and 1.9, respectively~whereas the associateda andQ values
are nearly the same!. Many least-mean-square fittings usin
Varshni’s formula show a general tendency5 of aV and b
values to be larger the lower the experimental cut-off te
perature,Tmax, was chosen to be. Thus, theseaV(Tmax) and
b(Tmax) values are artificial, and cannot be considered
characteristic parameters of the physical system. In fact th
1-11
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R. PÄSSLER PHYSICAL REVIEW B 66, 085201 ~2002!
physically unreasonableTmax-dependencies can even lead
infinite aV and b values, or a simultaneous change of bo
parameters tonegativevalues, in cases5,58 whereTmax is sig-
nificantly lower than half of the Debye temperature.

V. ASSESSMENT OF VARSHNI’S FORMULA

Let us give a physical explanation for the notorious inco
sistency of Varshni’s parameter values, based on the ob
vation that Varshni’s model corresponds to an unusu
large degree of phonon dispersion,DV.1, which has never
been found in experiment~cf. Table I!. A preliminary esti-
mate of the magnitude of the dispersion coefficient,DV , as-
sociated with Varshni’sad hocmodel7 was made in Ref. 58
ChoosingaV5531024 eV/K andb5100 K for the param-
eters occurring in Varshni’s formula~26! we have generated
a series of sampleE(0)2EV(T) data points~open circles in
Fig. 7! for a temperature interval from 0 up to 10b51000 K.
Least-mean-square fittings of these artificial Varshni d
points were performed in Ref. 58 with two qualitatively di
ferent dispersion-related models, namely, the two-oscilla
model24 and the power law model.20 Both fittings gave mag-
nitudes for the dispersion coefficient of about unity,DV'1.
However, it was also seen there that, particularly for

FIG. 7. Fittings of a set of hypothetical Varshni data poin
@following from Eq. ~26! for aV5531024 eV/K andb5100# us-
ing qualitatively different dispersion-related models. These mod
are represented, first, by Eq.~C1!, which corresponds to theD51
limit of the analytical model developed in Sec. III~Appendix A!
and, second, by Eq.~14! in combination with curve shape function
of type ~B11!, that represent a hypothetical regime of extrem
large dispersion,D.1 ~see Appendices B and C!.
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cryogenic region (0,T,50 K) which is crucial for a reli-
able determination of the dispersion coefficient, neither
these models provided an adequate fit. The systematic de
tions in the cryogenic region~inset to Fig. 2 in Ref. 58! are
because the two-oscillator model24 tends to a plateau and th
power law model20 goes to a fractional power dependence58

@E(0)2E(T)#}T1.4, while Varshni’s model yields a qua
dratic low-temperature asymptote~27!. Now, in contrast to
the earlier models of Refs. 20 and 24, the dispersion-rela
models developed in the present study involve, for anyD.0,
a quadratic low-temperature asymptote~24!, the actual cur-
vature of which increases monotonically with increasingD.
The present analytical apparatus can thus be expected to
mit a more adequate fit of hypotheticalE(0)2EV(T) data
points~cf. Fig. 7 and Appendix C! and a more correct deter
mination of the dispersion coefficient,DV , associated with
Varshni’s model~26!.

Let us first estimate the magnitude ofDV analytically. To
this end we compare the low- and high-temperature asy
totes of the present models~Sec. III and Appendices A and
B! with those of Varshni’s function~26!. This allows us to
ascertain parameter relationships that should assure co
dence of the respective asymptotes. Consider first the lim
ing region ofhigh temperatures,T@Q, where theE(T) de-
pendences tend generally tolinear asymptotes, namely
E(T)→E(0)2a(T2Q/2), according to the dispersion
related theory@Eq. ~13!#, and EV(T)→E(0)2aV(T2b),
due to Varshni’s model@Eq. ~26!#. We see that both linea
asymptotes are coincident just for58

aV5a with b5
Q

2
. ~28!

Consider now the low-temperature asymptotes~24! and~27!.
These asymptotes are coincident when the correspon
curvature coefficients,c[p2D2a/(3(11D2)Q) in Eq. ~24!
andcV[aV /b in Eq. ~27! have the same magnitude, i.e., f

cV[
aV

b
5

2a

Q
5

p2D2a

3~11D2!Q
[c ~29!

@in accordance with Eq.~28!#. The latter relation is satisfied
just for D2/(11D2)56/p2, which corresponds to an effec
tive magnitude for the dispersion coefficient of

D→DV5S p2

6
21D 21/2

51.2452. ~30!

The crucial feature of the latter result is due to aDV value
being evensignificantly higher than unity~at variance to the
preliminary estimations58 giving values of about unity!.

Strictly speaking, the analytical model developed in S
III ~Appendix A! was limited a priori to an interval of
0<D,1. This raises the question of whether, in view of t
above use of the model-specific expression~24! for the low-
temperature curvature coefficient,c, the resulting estimation
~30! for the Varshni dispersion coefficient is internally co
sistent. To clarify this question we have considered in A
pendix B a class of weighting functionswg(«) ~B7! as rep-
resentatives for a hypothetical regime of extremely la

ls
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DISPERSION-RELATED DESCRIPTION OF . . . PHYSICAL REVIEW B 66, 085201 ~2002!
dispersion,D.1. Comparing the low- and high-temperatu
asymptotes of the corresponding~hypothetical! shape func-
tions hg.2(j) ~B11! for D.1 @i.e., Eqs.~B12! and ~B13!#,
with those of the above considered shape functionshs.0(j)
~A6! for 0,D,1 @i.e., Eqs.~A7! and~A8!, respectively# we
see that the respectivehD(j) asymptotes are precisely th
same. This proves the internal consistency of the above
mation~30! of the magnitude ofDV also within the analytical
model developed in Appendix B for the corresponding~hy-
pothetical! regime of extremely large dispersion,D.1.

In order to realize that the estimatedDV value~30! reflects
in adequate way not only the asymptotic behaviors of Var
ni’s hypotheticalEV(T) curve ~26! but applies, in fact, to
arbitrary temperatures~starting from the cryogenic region
0<T!b, through the middle region,T'b, up to very high
temperatures,T@b!, we have performed in Appendix C
detailed numerical analysis~least-mean-square fit! of Varsh-
ni’s hypotheticalEV(T) curve ~Fig. 7! using the analytical
model developed in Appendix B for the hypothetical regim
of extremely large dispersion~D.1!. As a final result of this
detailednumerical analyses~in Appendix C! we have ob-
tained a value ofDV51.2535, which deviates from theana-
lytical value ~30! by only about 0.7%. Thus a magnitude
about DV>1.25 ~within an uncertainty lesser than60.01!
can be considered as a definitive value for the dispers
coefficient associated with Varshni’s formula~26!.3,7

VI. CONCLUSIONS

In summary we can say that Varshni’s model~26! assumes
an extremely largedegree of phonon dispersion, which
unrealistic based on detailed least-mean-square fittings o
perimental data sets, 0<D&3/4. This applies not only to the
group IV, III–V, and II–VI materials considered in this a
ticle. In fact, in the large number of available experimen
E(T) data sets for different classes of binary and tern
semiconductor materials~in bulk! or heterostructures, no in
dication of very large dispersion,D.1, could ever be found
Thus, there is hardly a chance for Varshni’sad hocmodel to
give a physically reasonable interpretation of the gap shr
age effect in such a system. Sample analyses, e.g.,61 of the
exciton energy data given by Mudryiet al.62 for ZnAs2 , of
the photoluminescence peak positions given by Tuet al.63

for a Ga2O3(Gd2O3) thin film, or of the excitonic peak po
sition data given by Homs and Marı´64 for the layered III–VI
material InSe, have shown that these are associated with
regime ofmoderate~intermediate! dispersion,6 0.3,D,0.5
~as are the majority of the materials listed in Table I!. Thus in
view of the much larger dispersion coefficientDV>1.25~30!
of Varshni’s model~26! and the vanishing dispersion coeffi
cient, DB50, for the Bose–Einstein model~25!, neither of
these conventional three-parameter models is capable of
viding physically adequate interpretations ofE(T) depen-
dences. In contrast, the novel four-parameter expression~23!,
owing to its large range of applicability, 0<D&3/4, is found
to be well suited for numerical analyses ofE(T) data sets for
a large variety of binary and ternary semiconductor mater
and heterostructures. Corresponding sample analyses w
published in forthcoming papers.
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APPENDIX A: MODEL FOR SMALL TO LARGE
DISPERSION „0ÏDË1…

Consider a class of weighting functions of type

ws~«!5
s

«o
•S 12

«

«o
D s21

, s.0, ~A1!

for « up to a certain cut-off energy, 0<«<«o , andws(«)
50 elsewhere~Fig. 1!. The calculation of the correspondin
model-specific moments~10! involves certain definite inte-
grals of which the analytical solutions are known from sta
dard mathematical literature to be given by

E
0

1

xm~12x!s21dx5
G~s!G~m11!

G~s1m11!
~A2!

@whereG(m11)5m!, for m50,1,2,...#. In accordance with
the standard relationG(z11)5z•G(z) for G-functions we
obtain thus for the model-specific moments~10!

^«m&5
m!«o

m

~s1m!•~s1m21!• ... •~s11!
. ~A3!

This expression reduces tô«&5«o /(s11) and ^«2&
52«o

2/((s11)(s12)), for the first and second moment
respectively. The dispersion coefficient~12! is thus given in
terms of the curve shape parameters.0 by

D5A s

s12
, i.e., converselys5

2D2

12D2 , ~A4!

and the effective phonon temperature Eq.~11! is related to
Qo[«o /kB by

Q5
1

s11
Qo5

12D2

11D2 Qo ~A5!

@in accordance with Eq.~A4!#. The relative simplicity of re-
lationships~A4! and ~A5! between the auxiliary quantitie
Qo ands, on the one hand, and the basic dispersion-rela
parametersQ andD, on the other hand, enables us to rep
sent the final results directly in terms of the latter@cf. point
~4! quoted in Sec. I#.

Inserting the model functionws(«) ~A1! into Eq. ~5! and
including Eq.~A5! we can write theE(T) dependence~5! in
a general form~14!, where the characteristic~dimensionless!
shape functionh is defined, in terms of the dimensionles
ratio j[2T/Q and the parameters.0, by integrals of the
form

hs~j![2s~s11!E
0

1

dx
x~12x!s21

expS 2~s11!

j
xD21

[
s

2~s11!
j2E

0

2~s11!/j
dz

zS 12
jz

2~s11! D
s21

exp~z!21
.

~A6!
1-13
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R. PÄSSLER PHYSICAL REVIEW B 66, 085201 ~2002!
The latter representation shows that, due to the rapid incr
of the exponential exp(z) ~in the second representation!,
more than 95% of the resulting value of the integral com
from the interval 0,z,5. Within this interval, for suffi-
ciently low temperatures,j/~s11!!1, the term jz/@2(s
11)# is much smaller than unity. Neglecting hence this te
and extending the range of integration to infinity we come
a limiting value ofp2/6 @5Eq. ~7! for n50# for the integral
occurring in the second representation of Eq.~A6!. The cor-
responding~quadratic! low-temperature asymptote is thu
given by

hs~j!→ p2s

12~s11!
j25

p2D2

6~11D2!
j2[hD~j!1!

~A7!

@the latter equality being in accordance with Eq.~A4!#.
For sufficientlyhigh temperatures,z[2(s11)x/j<2(s

11)/j,2p, we can make use of the Taylor expansi
z/@exp(z)21#512z/21z2/122... . Taking the known solu-
tions for the three lowest-order integrals~m50, 1, and 2! of
type ~A2!, we come to an intermediate-to-high temperatu
expression for the characteristic shape function of the fo

hs~j!→j211
2~s11!

3~s12!j
5j211

11D2

3j
[hD~j@1!

~A8!

@in accordance again with Eq.~A4!#.
Consider further the problem of reliablenumericalcalcu-

lations of the shape functionhs(j) ~A6! for any j @i.e., in
particular for the middle region,p,~s11!/j,10, where the
hs(j) dependence deviates significantly from asympto
~A7! and ~A8!#. From Eq. ~A4! we see that for moderat
~small to intermediate! dispersion, 0,D,Dc5321/2, the pa-
rameters ranges within the interval 0,s,1. The corre-
sponding weighting functionsws(«) ~A1! are monotonically
increasingwith increasing phonon energy« and have asin-
gularity at «→«o ~cf. Fig. 1!. This corresponds to a singu
larity of the factor (12x)s21 in Eq. ~A6! ~in the first version
of integral representations! for the characteristic shape func
tion, hs(j), at the upper end,x→1, of the integration inter-
val. Consequently, the representation~A6! cannot be used fo
numerical integration in cases of moderate~small and inter-
mediate! dispersion, 0,D,321/2. For the sake of reliable
numerical calculations of integrals of type~A6! it is thus
necessary to bring the upper section of these integrals, b
integration by parts, into a form where the transformed in
grands are finite everywhere~vanishing atx→1!.

Let us denote byxc a point ranging somewhere in th
middle region between the lower and upper boundaries
integration, 0,xc,1 ~e.g.,xc→0.5!, in Eq. ~A6!, and con-
sider the total integral~A6! as a sum of two partial integral
for the sections 0<x<xc andxc<x<1, respectively. For the
sake of a convenient transformation of the second integra
parts we introduce the auxiliary functions

u~x![~12x!s and n~x![
x

exp~2~s11!x/j!21
.

~A9!
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Their first derivatives are given by

u8~x!52s~12x!s21 and n8~x!5
1

exp~2~s11!x/j!21

2
~s11!x

2j~sinh~2~s11!x/j!!2 . ~A10!

Evaluating, henceforth, the second integral by parts,

E
xc

1

dx u8~x!n~x!5@u~x!n~x!#xc

1 2E
xc

1

dx u~x!n8~x!

~A11!

we obtain for the total integral~A6! an expression of the
form

hs~j!52~s11!H sE
0

xc
dx

x~12x!s21

exp~2~s11!x/j!21

1
xc~12xc!

s

exp~2~s11!xc /j!21

1E
xc

1

dx
~12x!s

exp~2~s11!x/j!21

2
~s11!

2j E
xc

1

dx
x~12x!s

~sinh~2~s11!x/j!!2J .

~A12!

The integrands in these partial integrals are seen to be
from singularities~for any s.0!. Thus the latter representa
tion ~A12! is suitable for numerical calculations of shap
functions,hs(j), within the whole region of dispersion co
efficients, 0,D,1 Eq.~A4!, associated with the model func
tion ws(«) ~A1! in consideration.

APPENDIX B: MODELS FOR EXTREMELY LARGE
DISPERSION „DÐ1…

Let us consider first thes→` limit of the analytical
model displayed in Sec. III which, according to Eq.~A4!,
should correspond just to a magnitude ofD→1 for dispersion
coefficient. Within this model, the cut-off energy«o @in Eq.
~A1!# can be represented in terms of the parameters.0
and the associated average phonon energy^«& as «o5(s
11)^«& @in accordance with Eq.~A3!#. Consequently we can
rewrite the weighting functionws(«) ~A1! in the equivalent
form

ws~«!5
s

~s11!^«& S 12
«

~s11!^«& D
s21

. ~B1!

Referring to the well-known representation of exponen
functions by limits of type

lim
p→`

~17x/p!6p5exp~2x!, ~B2!

wherex5«/^«& and the parameterp differs from the corre-
sponding quantitiess61 in Eq. ~B1! by only 61 ~this dif-
1-14
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ference being negligible in thes→` limit !, we see that Eq
~B1! goes to the exponential function

wD51~«![ws→`~«!5
1

^«&
expS 2

«

^«& D , 0<«,`.

~B3!

The latter is again properly normalized~to unity! and the
moments~10! are ^«m&5m! ^«&m, i.e., in particular^«2&
52^«&2, for the second moment. This result confirms@ac-
cording to Eq.~12!# the value indicated above for the ass
ciated dispersion coefficient,D51.

Inserting Eq.~B3! into Eq. ~5! and representing the ave
age phonon energy as usual in terms of the phonon temp
ture, Q5^«&/kB ~11!, we obtain for theE(T) dependence
again an expression of the general form~14!, where the de-
pendence of the corresponding shape functionhD51 on the
dimensionless argumentj[2T/Q is given by integrals of
the form

hD51~j![2E
0

~`!

dx
x exp~2x!

expS 2x

j D21

5
1

2
j2E

0

~`!

dz

z expS 2
jz

2 D
exp~z!21

. ~B4!

Representing the Bose–Einstein factor in the latter inte
by the expansion

~exp~z!21!215 (
n51

`

exp~2nz! ~B5!

~which is convergent for anyz.0!, we can readily perform
the integration for the individual exp(2nz) terms. In this way
we transform the shape functionhD51(j) ~B4! exactlyinto a
series expansion of the form

hD51~j!5
1

2
j2(

n51

`
1

S n1
j

2D 2 . ~B6!

A series of numerical values is represented by the square
Fig. 2. Comparing thesehD51(j) values with Varshni’s char-
acteristic shape function,hV(j)5j2/(j11) ~Fig. 2!, we see
that the latter shows an evenstronger curvature than
hD51(j) ~B6!. This is an indication for the effective dispe
sion coefficient associated with Varshni’s model~26! to be
somewhathigher than unity, DV.1. For a more accurate
estimation ofDV we need, consequently, an analytical mod
applying to a~hypothetical! regime of extremely large dis
persion,D.1.

A convenient choice for an analyticalD.1 model, which
can be looked upon as a natural extension of the model fu
tion ws(«) ~A1! considered above~for 0,D,1, in Appendix
A and Secs. III and IV!, is given by a weighting function o
type
08520
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wg~«!5
g

«o
•S 11

«

«o
D 2g21

, where g.2. ~B7!

Observing that

E
0

` xm

~11x!g11 dx5
G~g2m!G~m11!

G~g11!
, for 21,m,g,

~B8!

we see that the two nontrivial lowest-order moments~10! are
^«&5«o /(g21) and ^«2&52«o

2/((g21)(g22)). The dis-
persion coefficient~12! is thus given in terms of the curv
shape parameterg.2 by

D5A g

g22
, i.e., converselyg5

2D2

D221
, ~B9!

and the effective phonon temperature~11! is related toQo
[«o /kB by equation

Q5
1

g21
Qo5

D221

D211
Qo . ~B10!

Inserting the model function~B7! into Eq. ~5! and observing
Eq. ~B10! we can write theE(T) dependence~5! again in the
general form~14! with a characteristic shape functionh,
however, that is given now by~equivalent! integrals of the
form

hg~j![2g~g21!

3E
0

`

dx
x

~11x!g11FexpS 2~g21!

j
xD21G

5
g

2~g21!
j2E

0

~`!

dz
z

S 11
jz

2~g21! D
g11

@exp~z!21#

.

~B11!

The second representation ofhg(j) shows@in analogy to the
counterpart forhs(j) in Eq. ~A6!# that, due to the rapid
increase of the exponential, exp(z), more than 95% of the
resulting value of the integral comes from the interval 0,z
,5. Within this interval, for sufficientlylow temperatures
@~i.e., here~g21!/j.10!, the termjz/(2(g21))# is small
compared to unity. Neglecting this term we come again t
limiting value of p2/6 @5Eq. ~7! for n50# for the integral
occurring in the second representation of Eq.~B11!. The cor-
responding ~quadratic! low-temperature asymptote read
thus, explicitly,

hg~j!→ p2g

12~g21!
j25

p2D2

6~11D2!
j2[hD.1~j!1!

~B12!

@in accordance with Eq.~B9!#. An important feature of Eq.
~B12!, particularly with respect to the analytical study in Se
V, is the perfect coincidence of the asymptotehD.1(j!1)
~B12! for the hypothetical regime of extremely large dispe
1-15
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R. PÄSSLER PHYSICAL REVIEW B 66, 085201 ~2002!
sion with its counterparth0,D,1(j!1) ~A7! for the physi-
cally realistic regimes of small to moderately large disp
sion ~Secs. III and IV!.

For sufficientlyhigh temperatures,z[2(g21)x/j<2(g
21)/j,2p, we can again make use of the Taylor expans
z/@exp(z)21#512z/21z2/122... . Substituting the param
eterg.2 by the corresponding dispersion coefficientD @ac-
cording to Eq. ~B8!# we come, formally, again to an
asymptotic shape function expression of the usual form~A8!,

hg~j!→j211
2~g21!

3~g22!j
5j211

11D2

3j
[hD.1~j@1!.

~B13!

We wish to point out that, within the frame of thishypotheti-
cal model for extremely large dispersion,D.1, it is not pos-
sible to construct a complete high-temperature series ex
sion in analogy to Eq.~9! by adding furtherj2n terms,n
53,5,7,..., to Eq.~B13!. This is due to the fact that, depen
ing on the actual magnitude of the parameter 2,g,1`,
the corresponding higher-order moments^«m&, m.g, tend
to infinity.

APPENDIX C: DISPERSION-RELATED FIT OF
VARSHNI’S HYPOTHETICAL E„T… FUNCTION

First of all we can clearly exclude the eventuality of aDV
value lower than unity, e.g., by performing a numerical fit
the hypotheticalE(0)2EV(T) data points~Fig. 7! on the
basis of the model developed in Appendix A~Sec. III!. Using
Eq. ~14! for the E(T) dependence along with the exact~in-
tegral! representation~A6! for the characteristic shape func
tion, hs(j)[hs(2T/Q), we are concerned with a leas
mean-square process involving an unlimited increase of
curve shape parameter,s→`. The latter corresponds, ac
cording to Eq.~A4!, to an approach of the dispersion coef
cient just to unity,58 D→1. In this limit ~see Appendix B!, the
weighting functionws(«) ~A1! reduces to an exponentia
wD51(«)}exp(2«/^«&) ~B3!. The latter enables a transfo
mation of the integral~B4! for the corresponding shape fun
tion, hD51(j), into a series expansion~B6!. From the latter
follows, in combination with Eq.~14!, for the E(T) depen-
dence in this special case a series expansion of the relat
simple form

ED51~T!5E~0!2
aT2

Q (
n51

` S n1
T

Q D 22

. ~C1!

This expression is exact@with respect to the limiting weight-
ing function~B3!# and is convergent for anyT. Performing a
least-mean-squares fitting of theE(0)2EV(T) data points
~Fig. 7! using the three-parameter expression~C1! we have
obtained the parameter valuesa54.97131024 and
Q5186.2 K.@Note that these values are nearly equal to th
obtained in Ref. 58 from a fitting of the same set ofE(0)
2EV(T) data points by the two-oscillator model.24# The cor-
responding ratiosaV /a51.006 andb/Q50.537 between the
aV andb values chosen above and the fitteda andQ values
are in reasonable agreement with analytical relations~28!. At
the same time we see from the inset to Fig. 7 that the fi
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ED51(T) curve ~C1! tends to aED51(T→0) limiting posi-
tion which is located about 0.58 meVbelow the original
EV(T→0) position of the Varshni curve. A small deviatio
like this might appear to be almost negligible in experime
since experimental uncertainties, even in theT→0 limit, are
often of the same order. However, we also see from the in
to Fig. 7 that the curvature of theEV(T) curve in the cryo-
genic region (0,T,50 K) is about 14% stronger than tha
of the ED51(T) curve ~C1!. Thus we are concerned aga
with systematicdeviations indicating that the effective dis
persion coefficientDV associated with Varshni’s model mu
be at leastlarger than unity,DV.1.

We have considered in Appendix B a class of weighting
functionswg(«) ~B7! for extremely large dispersion,D.1,
which have the convenient property of approaching in
g→` limit the same~exponential! function ~B3! as the pre-
vious weighting functionws(«) ~A1! ~Sec. III! in the s→`
limit. This choice ~B7! assures automatically acontinuous
change of fitteda and Q values when we pass from th
physically relevant dispersion region 0,D,1 to the hypo-
thetical regionD.1. Taking hence the shape functionh~j!
for the E(T) dependence@in Eq. ~14!# in the form of the
integral representationhg(j) ~B11! and fixing preliminarily
the shape parameter tog53 we have performed a three
parameter fit of the sameE(0)2EV(T) data points~Fig. 7!.
The resulting parameter values area55.02631024 and
Q5213.4 K. The corresponding ratiosaV /a50.995 and
b/Q50.469 are again in good agreement with analytical
lations ~28!. Comparing the latter parameter ratios for fixe
g53 @which corresponds to a dispersion coefficient ofD
531/2>1.73 ~B9!# with those quoted above for fixedD51
we see that their relative deviations from the theoretical id
values ofaV /a51 andb/Q50.5 ~28! have nearly thesame
magnitude, namely of about60.6% for a and 67% for Q.
Of special importance is the finding, however, that the
model-specific deviations of parameter ratios haveopposite
signs for these two alternative fits. An analogous statem
can also be made with respect to the deviations of fit
E(T→0) limiting positions from the originalEV(T→0) po-
sition of the Varshni curve. In the case of theg53 (D
531/2) the E(T→0) position is located about 0.55 me
above EV(T→0) ~cf. Fig. 7!. Thus the model-specific devia
tions of fittedE(T→0) positions from theEV(T→0) posi-
tion are found to have nearly thesamemagnitude~>0.6
meV!, but oppositesign, for theD531/2 vs D51 fit ~cf. Fig.
7!. These results of the two alternative three-parameter
suggest that the effective value of the Varshni dispersion
efficient should be located somewhere between these fixeD
values, i.e., at least 1,DV,31/2 @in qualitative agreemen
with Eq. ~30!#.

Finally, for a more conclusive determination ofDV we
have performed a complete four-parameter fit@using again
Eq. ~14! in combination with Eq.~B11!#. The corresponding
least-mean-square fitting procedure resulted in a dram
order-of magnitude decreaseof the residual variance
~namely, by factors of about 340 or 230 in comparison w
those left by the three-parameter fits forD51 andD531/2,
1-16
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respectively!. Consequently we are concerned with an e
tremely fine dispersion-related fit~Fig. 7! which is almost
indistinguishable from Varshni’s originalEV(T) data set.
@Note that the maximum deviation between the givenEV(T)
data set and the fittedE(T) curve, which occurs atT→0,
amounts to only 0.036 meV. Note further that the stand
deviation is even somewhat smaller than 0.01 meV#. The
associated parameter values area54.995531024 and
III

n

p

, T

.

-
uc

.
.

s.

r.
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-
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Q5196.12 K with g55.501. This means, among oth
things, a much closer approach than before of the assoc
parameter ratios,aV /a51.0009 andb/Q50.51, to their
ideal ~theoretical! magnitudes of 1 and 1/2 Eq.~28!. At the
same time we infer from Eq.~B9! that a fitted magnitude o
g55.501 corresponds to a dispersion coefficient ofDV
51.2535. The latter deviates from the ideal~theoretical!
magnitude~30! by only about 0.7%.
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61R. Pässler, to be published.
62A. V. Mudryi, V. M. Trukhan, A. I. Patuk, I. A. Shakin, and S. F

Marenkin, Fiz. Tekh. Poluprovodn.~S.-Peterburg! 31, 1029
~1997!.

63L. W. Tu, Y. C. Lee, K. H. Lee, C. M. Lai, I. Lo, K. Y. Hsieh, and
M. Hong, Appl. Phys. Lett.75, 2038~1999!.

64A. A. Homs and B. Marı´, J. Appl. Phys.88, 4654~2000!.
1-18


