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We have developed a novel dispersion-related model for monotonic temperature dependencies of fundamen-
tal band gapsEg4(T), and the associated excitonic absorption and emission line posikgs,), which is
suitable for detailed numerical analyses of experimental data available for a large variety of semiconductor
(including wide-band-gapmaterials and quantum-well structures. The present model is distinguished from
preceding ones by the following featurép: It is applicable to an unusually large span of magnitudes for the
phonon dispersion coefficieny, =/ (hw—ha)z)/ﬁa, extending from the familiar Bose—Einstein regime of
vanishingdispersion, A=0, up to the limiting regime o&xtremely largedispersion A<1. (ii) The resulting
analyticalE(T) functions approach, in theryogenicregion,quadraticasymptotes, the curvatures of which are
throughout significantlyveakerthan suggested by Varshneégl hocmodel. (iii) The novel analytical expres-
sions enable direct, straightforward determinations of TheO limits of gap widths, the high-temperature
limits of slopes, the average phonon temperatudes w/kg, and the associated dispersion coefficieAts,
without requiring preliminary determinations of oth@uxiliary) quantities. Results of least-mean-square fit-
tings for a variety of group IV, llI-V, and 1I-VI materials are given and compared with those obtained in
previous studies using less elaborate models. The parameter sets obtained suggest that the physically realistic
range of dispersion coefficients is confined to an interval from 0 up meagimumof about 3/4. Another,
qualitatively different, dispersion-related model, which represents the hypothetical regime of extremely large
dispersionA>1, is also developed in this paper solely for the sake of a detailed dispersion-related analysis of
Varshni's model function. Our analytical and numerical study concluded/rahni'smodel is associated with
a hypotheticalcase ofextremely largedispersion characterized by a dispersion coefficient significantly higher
than unity, A, = (w2/6—1) ?=1.245. This is in clear contradiction to empiricalvalues that range below
unity. The relatively large discrepancy between the upper boundary of about 3/4 for rehsticses and the
high value ofA,,=5/4 for Varshni’'s model is the fundamental reason for the usual inadedlzagg degree of
arbitrarinesp of parameter values resulting from conventional fittingsE¢T) data sets using Varshni’s for-
mula.
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. INTRODUCTION E(T) data sets on physically reasonablbasis. The problem

) ) ) of constructing a corresponding analytical framework is ob-
widths of fundamental band gas,(T), for a large variety s out to be, as a rule, the result of a superposition of
of semiconductor materialparticularly of group IV, IV, " contriputions made by phonons with largely different ener-
and II-VI materials, including ternary and quaternary alloys gies (peginning from the zero-energy limit for acoustical
decreasemonotonicallywith increasing lattice temperature. jp 0o up to the cut-off energy for optical phonons
Such a temperature-induced shrinkage of the gap width 'Earticular aggravation of this theoretical problem is the fact

seen m_experlment_s b_y, €g.a mo_n_otonlc red shift of excito that basic features of phonon dispersion that manifest them-
absorption and emission peak positiolg,(T), that are ob- . o .

. . : selves, e.g., in the positions of prominent phonon energy
servable in bulk samples as well as in associated heterostruc-

tures (superlattices, quantum well structures, quantum dot ,eaks and the relative weights of their cqntriputions o the
etc). These T-dependencies change from relatively weak®PServableE(T) dependence, may vary significantly from
(apparently quadratioones in the cryogenic region to rela- °"€ materlal_to the other. Thus, the analytical framework
tively strong onedapproaching linear asymptoleat tem- must bg flexible gnough to account for these_ quallf[atlvely
peratures higher than the effective Debye temperatureslarge differences in the features of phonon dispersien

Op . The corresponding red shift is of considerable practicagimes of small, intermediate, or large dispergiamong dif-
importance particularly with respect to semiconductor deferent materials.

vices that are intended to operate within a relatively large In recent years severdispersion-relatednodels that are
temperature intervalextending beyond room temperature Suitable for fittings ofEy(T) dependencies in various disper-
A prerequisite for good design of such systems is the availsion regimes have been presented. Among the qualitatively
ability of sufficiently comprehensive experimeng&|(T) or d_ifferent analytical approaches published, the structurally
Ey(T) data sets. In addition to reliable experimental infor-Simplest one has the fofm

mation, it is computationally convenient and theoretically in-

formative to develop an analytical framework that enables

one to perform numerical analys@sast-mean-square fjtef E(T)=E(0)— (a®p/2)[p\/l+ (2T/Op)P—-1]. (1)
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In this expression the parameter=S(>) represents th&  sion, 0<A<1A3=0.577. This limitation precludes applica-
—o limit of the slope,S(T)=—dE(T)/dT (=entropy®, tion of this model to certain materialparticularly to AlISb

0, is comparable withroughly equal th the average pho- and CdTé?" in the regime of large dispersion>1/3.

non temperaturé?® ®,~0®=(fw)/kg, and the fractional It is the aim of the present article to develop a more com-
exponentp is related to the material-specific degree of pho-prehensive and flexible dispersion-related model which is
non dispersioff, A= \((fw—(hw))?)/{(fw), by the ap- distinguished from preceding ones by the following features:

proximate relatiohA~1/Jp?~ 1. It has been shown in Ref. (1) The new model should apply to all physically relevant
5 for a variety of group IV, IlI-V, and II-VI materials that regimes of dispersion comprising the whole interval
this model function(1) (“ p-representation)’ provides best from the Bose—Einstein limitA—0) up to sufficiently
fits of measurede(T) data sets, with standard deviations large magnitudes of the dispersion coefficigite., the
significantly smaller than those associated with Varshemils experimentally relevant ran@‘bof 0<A=<3/4. at Ie.z'a st
hocmodef’ or expressions of Bose—Einstein type® Simi- ) Thp h ) yE T function sh \Id rend in th
larly successful have also been applications of Hg.to 2 e theoretica (M unction should tend in the cryo-
genic region to aquadratic asymptote, i.e.,[E(0O)

numerical fittings of temperature dependencies of exciton . . )
g P b —E(T)]xT? for T<O®p, in accordance with basic the-

line positions measured in ternary compourid8and quan- _ oD .
tum well structured®-23 oretical expectatiod$®>?" as well as experimental ob-

However, a detailed assessment of the parameter sets as- Servations. _ _
sociated with a variety of least-mean-square fittigs?us-  (3) The new model should be suited for the construction of a

ing Eq. (1) shows that, due to the relative simple analytical ~ Practicableanalytical expression that is capable of pro-

structure(the approximate naturef this model function, the viding accurate (self-consistent values for the
fitted parameter value®, and p often do not yield good dispersion-related parametesand A.

values for the two relevant lowest-order moméhtiw)  (4) Animportant additional aim of the model is to be able to
=kg® and ((hw)?)=(1+A%)(kg®)?. Particularly in the represent the findE(T) expressiorexplicitly in terms of
regime ofsmall dispersior182%22p> 3, the model-specific the model-independerparameters® and A, instead of
temperature parametér, tends to be about 20%wer than requiring preliminary determinations of various model-
the actual magnitude of the effectiyaverage phonon tem- specific auxiliary quantitie$?*

perature® (cf. Sec. 3 of Ref. b It is true that a moderate

underestimate o® values like that from Eq(1) may not The basis for the general semi-empirical thé(?ryor

have severe consequences for experimémignerical simu-  monotonicE(T) dependencies is sketched briefly in Sec. Il.
lations, including inter- and/or extrapolatidhd® of re-  We develop in Sec. Ill a gener(T) model which enables,
stricted data sets into adjacent temperature regitiexause above all, the derivation of analytical four-parameter expres-
the E(T) curves calculated using Efl) are almost indistin-  sions. We show that the total range of applicability of the
guishable from those resulting from more elaborateinterpolation formula derived in Sec. Il B extends from the
dispersion-related modelENote that possible deviations of Bose—Einstein limit up to moderately large dispersion, 0
comparable theoretic&(T) values resulting from different <A =<3/4, which is sufficient for practical purposes. Using
dispersion-related models are usually limited to an order ofhis novel four-parameter expression we determine in Sec. IV
only =0.2 meV, cf. Ref. 20 and see beldgWdowever, such the basic parameter sets for a variety of materials.
deviations of®, from true ® =(f w)/kg values are trouble- In addition we perform in Sec. V a more detailed
some when estimatifigelative weights of the contributions dispersion-related analysis of Varshni's model funcfidn.
of different parts of the phonon spectrueg., of prominent \We show that this conventional model is connected with an
acoustical and/or optical phonon pepks the measured excessively large degree of phonon dispersiag=5/4,
E(T) dependence. This is particularly true for estimations ofwhich is outside the experimentally relevant ranges 0

the dependenc® (x) of the effective(average¢phonon tem-  <3/4. Thus we conclude that Varshni's model is generally
perature on the composition ratix, for ternary compounds, incapable of providing physically adequate interpretations of
such as Zp ,Mg,Se}!” or Al,Ga _,As,*® where®(x) can  availableE(T) data sets.

only roughly be estimated frord ,(x) values obtained by

fittings using thep-representation. This is the motivation be- || sEMI-EMPIRICAL DESCRIPTION OF MONOTONIC

hind d_evising models more e_Iaborate_ than Eg. _ E(T) DEPENDENCIES
An important partial solution of this problem was given
by a relatively easily solvable hybrid mod&® which is To understand our subsequent analytical expansions it is

based on choosing a normalized weighting function in thesufficient to sketch briefly the analytical basis of the corre-
form of a linear combination of @onstantcomponent for sponding semi-empirical thed§ for monotonicE(T) de-
low-energy(acoustical phonons with asingular component  pendencies. This dispersion-related theory is in accordance
for high-energy (optical and short-wavelength longitudinal with the generally accepted observation that the gap shrink-
acoustical phonon€ Numerical fittings using the corre- age effect in semiconductors is the result of thenulative
sponding analyticaE(T) functiorf?® (* p-representationy  effect of electron-phonon interactiqiEPl) and thermal lat-
provided self-consistent values fér and A. Unfortunately, tice expansioTLE). It is based further on the observation
the applicability of thep-representatidi?® is a priori con-  thatboth types of contributions to the observaliT) de-
fined to cases of moderatemall and intermediajedisper-  pendence, that are made by the individual phonon mpdes
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(j=branch andq=wave vector, with phonon energies, & win(o)
=hwj,), are known to vary with lattice temperature just as w(e)= 2 0
. . . n=o0 n!
the Bose—Einstein  occupation factors,msjq T
=[expjq/kgT) — 1] (for more details see Ref. 6 and pa- [where the coefficients("(0) represent theith order de-
pers quoted therejnTaking together all contributions made rivatives of w(e) at e=0]. Inserting Eq.(6) into Eq. (5),
by phonon modegq with the same energy,;;=e, we could  going to a dimensionless integration variabtee/kgT, and
thus represent the resultirfig(T) dependence by a unique observing that, folT<®p, the integrals for the individual
integral of the forri e" terms can be well approximated by

e ©6)

- n+1
E(T)=E(0)—fdsf(s)-ﬁ(s,T), 3] f dzg—7 =(n+1)1L(n+2), (7)
0 _
where the relevant spectral function is given by the sumfwhere the low order values of Riemanrisfunctions are
f(e)=1""(e)+f (&), of qualitatively different compo- (2)=7%/6=1.645, 7(3)=1.202, {(4)=7*/90=1.082,.],
nents due to both mechanisms, an(k,T)=[expe/ksT)  we come to a series expansion of the form
—1] ! represents the thermally averaged phonon occupation

number in the corresponding spectral region. Expanding the a )
latter for high temperature3= @y, in the form of a Taylor ~ E(T)—~E(0)—(— Z (n+1)Z(n+2)w™(0)(kgT)"*2.
series, N(e,T)—kgT/e—1/2+&/(12kgT)—..., we see Bn=0

readily that the high-temperature limiting magnitude of the ®)
slope of theE(T) dependencé2) is given by the integral This means that th&(T) dependence in th&—0 limit is
dominated by agquadratic asymptote,E(T)—E(0)—w(0)
f(e) X (7?16)akgT?, provided that the weighting functiof@) is
—fB f de : 3) nonvanishingn the e—0 limit, w(0)>0.
The occurrence of a quadratic low temperature asymptote
For a variety of semiconductors and insulators, particularlyhad already been predicted many years ago in several theo-
of group IV, 1lI-V, and most II-VI materialgincluding their  retical studie$>=?’ Unfortunately, this was misrepresented
ternary and quaternary alloys as well as various other binariater in Varshni'sad hoc formula®’ (for more details see
or ternary compoundsthe spectral functiofi(e) in Egs.(2) Secs. IV and V. Nevertheless, the expectation of an essen-
and(3) can be inferred from measur&{T) dependencies to tially quadratic low-temperature asymptote seems to be in
be essentially aositive semi-definitéunction of ¢ through-  accordance with experimental observations for a large vari-
out thewhole spectrum of phonon energie,e)=0. [Note ety of materialgcf. in particular Ref. 6 and see belpvilrhus
that there are exceptions, e.g., ternary compoundwe have a good chance of coming to an adequate analytical
Hg;_,Cd,Te, 0.1%x<0.528 wheref(¢) is obviously nega- model forE(T) dependencies if we chose for thge) de-
tive; or CuCI?® where f(¢) changes its sign between the pendence in Eq5) a model function which, apart from vari-
sections of acoustical and optical phondrGonsequently, ous other detailgcf. Sec. Ill and Appendices A and)Bis
with respect to the numerous cases of semi-defifft€) generally nonvanishingin the zero phonon energy limit,
functions, it is convenient to introducenarmalized, positive w(0)>0.
semi-definite weightinfunction defined by

dE(T)
dT

a=—

Too

Kef(e) B. Intermediate- to high-temperature behavior
&
w(e)= & , (4) Consider now the argumertEe/kgT of the exponential

ae function [in the denominator of the integrdb)] for the

[so thatfdew(e)=1, in accordance with Eq3)]. In terms  Whole spectrum of phonon energies=8<kg®p, to be
of Eq. (4) we can thus rewrite the integré?) in the equiva- Smaller than zr. Accordingly we can represent the corre-

lent form sponding terms of the integrand in E&) by a Taylor ex-
pansion of typex/(e*—1)=1—x/2+x?/12—x*720+....
a w(e)e The E(T) dependencé5) reduces thus, folf >0p/2, to a

E(T)=E(0)— k_Bf de exp(elkgT)—1° (5 series expansion of the universal f&rm

3 a (g) (&%) (e%)
E(N=E0)~ ( KeT = 5 T TaT 720kgT)?

(£°) )

A. Low-temperature behavior 3024Q kBT)5

It is instructive to briefly consider some general features of
the corresponding monotoniE(T) dependencieg5) for
ranges of relatively lowicryogenig¢ and high temperatures.

(€)

Let us consider the weighting functigd) with respectto  where we have denoted by
a certainlow-energy region, i.e., for € <kg®p at least
(corresponding to the edge regionlohg-wavelength acous- m _ m -~
tical phonong to be representable by a Taylor series, (M= | dee™w(e), for m=1,246.., (10
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the associated moments of the total phonon energy spectrum. 4.0
The position of the center of gravityn(=1) with respect to
the temperature scale is represented in analyE¢al) mod-
els by an effectivédaverage phonon temperature, - w(e)-g, = o-(1—e/e)”!

O=(e)/Kg. (11)

The occurrence of phonon dispersion, which is expressed by
the difference between the second moment and the square of
the first moment, can be conveniently quantified by the dis-
persion coefficierit

A= (%) —(&)?/(e). (12 & 20k

In terms of these basic, dispersion-related paraméekl) 2
andA (12) we can rewrite the low order pafiip to the 1T
term) of the series expansia®) in the equivalent form

3.0 -

0 (1+A?06?
E(T)—E(0)—a T—E"‘T . (13

1/4
IIl. REPRESENTATIVE ANALYTICAL MODEL 1/8

12 //

1716
For a perfectinonapproximatenumerical description of
the E(T) dependence it would be necessary to know in detail
the weighting functiony(e), throughout the whole phonon 0.0 T e S—"
spectrum of a given material. Such detailed microscopic in- ' ‘
formation is usually not available. Moreover it is obvious elg

that, except for the idealized model represent&ttérof

w(e) by discrete(s-functionlike) peaks, exact calculations of ~ FIG. 1. e-dependencies of monotonicallycreasingor decreas-

integrals of type(5) are, as a rule, very cumbersome andN9 weighting functions of typéAl), for varlous.dlscrete parameter

time-consuming for any more realistic form of the weighting Valuéso<1 ando>1, for moderate(small to intermediate and

function. In view of the unsuitability of such a rigorous pro- 129€ dispersion, respectively.

cedure, for many practical purposes it is thus useful and suf-

ficient to approximatev(e) by a somewhat simpler, analyti- B _ ﬂ 5

cal model function. E(T)=E(0) > 7 ’
A convenient model for a normalized weighting function,

w(e), which will be seen below to reasonably satisfy thewhere the characteristi@imensionlessshape functionsy

series of requirements quoted in Sec. |, is given by a class Gfre defined, in terms of the dimensionless rgte2T/® and

functions of typew,(e)=(1—e/e,)” * (Al), wherea>0  the parameter>0, by integrals of the forntA6). The be-

[for & up to a certain cut-off energy,9s<e,, andw,(e)  haviors of these shape functions,(£¢) in the limiting re-

=0 elsewhere; see Fig. 1 and Appendik &or a parameter gions of low and high temperaturefEorresponding to

range of B<o<1 the model functionsv,(g) (Al) are mo-  &regions ofé<(o+1)/10 andé>(o+1)7r] are given by the

notonouslyincreasing, with increasing (cf. Fig. 1). The analytical expressiong\7) and(A8), respectively.

associated dispersion coefficients follow from E&4) to lie

within the range <A <3712 which corresponds to the re- A Analviical imation derate and |

gime ofmoderate(small to intermediatedispersiorf. On the - Anaytica ag_proxm_wa |ojnj3c;rAm<olera ©andlarge

other hand, for a parameter range ef @<+, the model ispersion (/3= )

functionsw, (&) (A1) are monotonouslgecreasing, with in- Both limiting behaviors represented by Ed#7) and

creasinge (cf. Fig. 1). From Eq.(A4) it follows that the (A8) can be readily seen to be satisfied by an analytical an-

corresponding dispersion coefficients lie within a range ofsatz of the form

3 12<A<1. The class of model function@1) thus also

comprises a relatively broad section of the regimdanfe 6 4

dispersion.[Note that the total interval ofA values com- na(é)= \/1+ > ay(A)En+£5-1, (15

prised by the present model=<@<1, is thus even more n=2

extensive than the experimentally relevant interval of about ) o

0<A=3/4; cf. point(1) in Sec. 1] vv_here the second and fourth order expansion coefficients are
Inserting the model functiow, (&) (A1) into Eq.(5) and ~ 9iven by

including Eq.(A5) we can write theE(T) dependencéb) in

a general form ay(A)=m?A?%/(1+A?%) and a,(A)=2(1+A?). (16)

(14
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FIG. 2. Characteristic shape functiong (&) for intermediate
andlarge dispersion, 0.8<A<1. The approximate values following
from the sixth root representatiofl5) [with coefficientsa,(A)
given by Eqs(16) and(17)] are nearly equal to exaet, (&) values
obtained by numerical integration of Eq#12), (A6), or (B6), for
0<0<1, I<o<%, ando—x, respectively. A numerical comparison
of a shape function of Varshni typep,(&€)=£%/(1+¢), with a
shape functionn,(¢) (B11) resulting from a weighting function
model of type(B7) is also included. The approximate equality of
both functions, for a parameter value p£5.5, shows that Varsh-
ni's model corresponds to an excessively latghysically unreal-

istic) A of about 1.25according to Eq(B9)].

The remaining third order coefficiertz(A) affects the be-
havior of the approximate shape functi@tb) especially in
the range from low to intermediate temperaturesrre-
sponding toé-values of the order of unity, Fig.)2A reason-

PHYSICAL REVIEW B 66, 085201 (2002
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FIG. 3. Characteristic shape functiong(&) for small, interme-
diate and moderateljarge dispersion, &cA<0.7. The approximate
values from the elaborate interpolation formy20) (with coeffi-
cientsc,(A) given by Eqs(21) and(22)) are nearly equal to exact
7,(&) values obtained by numerical integration of E&12) or
(AB), for 0<o<1 and Ko<2, respectively.

This coefficient reduces thus to zeeay(A;)—0, just at the
point of transition,A—A.=3"'2 between the regimes of
intermediate and large dispersion. Note that both approxi-
mate expressiongl7a and(17b), for the third order coeffi-
cient give the same valu@g(2~ %) =—1/4, for A=2"12
=0.707, and that its magnitudes asenall throughout in
comparison with those of the fourth order coeffici€¢h6),
2<ag,(A)=<4.

We have plotted in Fig2 a series ofy, (&) curves fol-
lowing from Eg. (15), with A-dependent expansion coeffi-
cients given by Eqs(16) and(17a/h, for equidistantA val-

able analytical approximation for the latter can thus be founq,es pertaining to the regimes of intermediate and large

by requiring that the analytical formulél5) represents a
good approach to the original integréd6) particularly in
this region of intermediaté values. By comparing results
obtained via numerical integratignsing Eq.(A6), for 1<o,
or (A12), for 0<o<1] with approximate results from Eq.
(15 we have found that adequate approximationsafg{iA)

are given by

az(A)=1—-4A%+3A% for 1/3<A<1N2

and

az(A)=(1-3A?)/2, for IM2<A<1.

dispersion. The bold circles in Fig. 2 represent the exact
values obtained by numerical integration of the first version
of Eq. (A6), for 1=a, or Eq.(A12), for 0<o<1. The com-
parison of the latter with approximate resulsolid curves

in Fig. 2 shows that, due to the specification of expansion
coefficients by Eqs(16) and (17a/h, the sixth root expres-
sion (15) is a good approximation to the characteristic shape
functions for dispersion coefficients within a range of about
1/3<A<1, at least.

Replacing, henceforth, the origin@xac) shape function
7,(§) (A6) [=(A12)] in Eq. (14) by 7,(§) (15 we can
describe thd=(T) dependencies, for regimes iotermediate
andlarge dispersion, to a good approximation by an analyti-
cal expression of the form
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a® where theA-dependent second and fourth order expansion
E(T=E(0)-— coefficients are given by
4 n 6
6 2T 2T
x| A1+ 2 an(A)| = | +|=| —-1]. C,(A)=m2(3(1+A?)) and c,=8/3. 1)
n=2 (C]
(18)
We see that in the Bose-Einstein limi&—0, the 7, (&)
B. Overall formula for small, intermediate, and larger ansatz(20) coincides with the characteristic Bose—Einstein
dispersion (0<A=3/4) shape functionpg(£) (19). Furthermore we find readily, by

Analytical models of Bose—Einstein ty}id® represent €xpanding the expressid@0) for the limiting regionsg<1
the limiting case of vanishing dispersioh—0. The charac- and&>1 into a Taylor series, that the corresponding asymp-
teristic shape function for this limityg(&)=n,_.o(£), has  totes actually coincide with EqA7) and(A8), respectively.
the forn? To determine, approximately, th& dependence of the
coefficientc3(A) we have done comprehensive numerical
_ 2 _ 1 comparisongFig. 3) between exacty, (&) values obtained
(&)= exp(2/£)—1 _COt%E) —L 19 Via numerical integratiorfin Eqs. (A6) or (A12)] and ap-
proximatez, (&) values following from Eq(20). In this way

The latter is obviously not coincident with the—0 limit of we have found an adequate approximation dgfA) to be

Eqg. (15). This is why a mere root representation like Etph) .
does not give good results for the regime of small dispersiond’Ven bY

0<A<1/3. The latter regime is only rarely s€éfiin bulk

samples of elemental and binary materials; however it has )

been found recently in certain ternary compodfidand C3(4)=(3A7-1)/4. (22)
heterostructure®-?2 Thus, it is desirable for practical appli-

cations to find a more general analyti€[T) representation

that will give good results within the entire interval of dis- The corresponding shape functiof29) are plotted for a se-
persion coefficient\ relevant to experimenté.e., from 0  ries of equidistant values of the dispersion coefficient in Fig.

up to about 3/4, at least 3. The comparison of thesg¢dependenciegsolid curve$
Such an analytical approximation can be constructed viavith exact valuegdotsy due to Eq.(A6) or (A12) shows that

the alternative ansatz Eq. (20) represents, in fact, a good analytical approximation
2(1-3A2) within the whole interval &A<0.7 (at leas}, i.e., from com-

na(E)= pletely vanishing up to moderately large dispersion. Replac-
exp2/§)—1 ing, finally, the originaexac) shape function;, (&) (A6) in
Eq. (14) by the analytical approximation,(£) (20) we can

)
e\/1+ S ¢ (A)§n+§6_1) (20) represent, henceforth, ti&T) dependence explicitly in the
A=z ’ form

+3A2

B (1-3A?) 3A2(6\/ w2 (ZT
EM=E0-a®i Srem=-1" 2 | Vi 3a+ag| e

2+ 3A%—1/(2T
4

(23

Comparing the latter representation with Et8) we see that gap materialsand associated heterostructures. In contrast to
both analytical approximations are just coincident at the tranearlier dispersion-related modél&2°?* applications of
sition point between the regimes of moderate and large diswhich generally involve preliminary estimations of various
persion,A—A =312 model-specific auxiliary quantities, the final analyti€AIT)
expressions derived in the present paper, Eff. and (23),
are givenexplicitly in terms of the dispersion-related param-
eters® (11) and A (12) [in combination witha (3) and

On the basis of a physically reasonable model ansatz fde(0)]. These basic parameters can hence be determined di-
the spectralweighting function we have derived two elabo- rectly via least-mean-square fittings of givE(T) data sets.
rate four-parameter expressions for monotonic temperature The qualitative difference in the analytical structures of
dependencies of fundamental or excitonic energy gapghe two alternativee(T) expressions derived in Subsections
E4(T) or Eg(T), of semiconductorsincluding wide-band- [lIA and IlI B is closely related to their specific ranges of

IV. SAMPLE RESULTS AND DISCUSSION

085201-6



DISPERSION-RELATED DESCRIPTION B. .. PHYSICAL REVIEW B 66, 085201 (2002

TABLE |. Dispersion-related parameters from numerical fittings of experimeB{dIT) (funda-
mental band gagpor E4,(T) (exciton peak data available for various group IV, 1lI-V, and 1I-VI materials
using Eq.(23).

Tmin~ Tmax all0™* 0 a®/2
Material Ref. (K) (eVIK) (K) A (meV)
Diamond 30 103 to 660 (5.0 (1339 (0.11) (3349
SiC (15R) 31 6 to 645 4.67 919 0.32 215
Si 32,33 2 to 415 3.23 446 0.51 72
Ge 34 4 to 416 4.13 253 0.49 52
AIN 35 4 to 298 9.1 (770 (0.39 (350
AlAs 36 4 to 287 3.90 256 0.48 50
AISb 37 4 to 298 3.45 205 0.76 35
GaN 38 2 to 1067 6.14 586 0.40 180
GaP 39,40 4 to 680 4.77 355 0.60 85
GaAs 41,42 210 673 477 252 0.43 60
GaSb 43,44 9 to 300 3.87 205 0.44 40
InN 45 4 to 300 (2.3 (590 (0.35 (68
InP 46,47 4 to 873 3.96 274 0.48 54
InAs 48 10 to 300 2.82 147 (0.68 21
InSb 48,49 10 to 550 2.54 155 (0.39 20
ZnSs 50 2 to 541 5.49 285 0.37 78
ZnSe 50 4 to 500 5.00 218 0.36 55
ZnTe 50 210 291 4.68 170 0.37 40
Cds 51/54 2 to 289 4.10 166 0.47 34
CdSe 55 15 to 550 4.08 187 (0.20 38
CdTe 56 2 to 300 3.08 104 0.69 16

applicability. As we have concluded above from Figs. 2 and In order to compare results of the present model with
3, Egs.(18) and(23) represent goocself-consistentanalyti-  earlier (approximate or partial results due to the
cal approximations to the original integrd® for dispersion p-representation, the p-representatiofi, and/or the two-
coefficients within ranges of about #A<1 or 0<A=<3/4, oscillator model* we performed least-mean-square fittings
respectively. Favorable for many practical applications is thef the same experimental data sets for group®Iv;}
relatively largeoverlap 1/3<A=<3/4, between the respective I1I-V,*~*and II-VI materials’~>°by Eq.(23). The result-
ranges of applicability, wherkoth formulas give essentially ing sets of parameteks (3), ® (11), andA (12) are listed in

the sameresults(for some typical examples see belowhis ~ Table I. The associated zero temperature positieg&)) or
overlap gives us for many materials, among other things, th&g,(0), are notreported because these positions calculated
opportunity to assess the degree of reliabilitpambiguous- by Eq.(23) are essentially the santexcept for tiny numeri-
nes$ of the outcomes of least-mean-square fitting processesal differences of order-0.1 me\} as those obtained using
by comparing the results obtained alternatively from Eqsthe earlier(less elaboratedispersion-related modet$:?*In

(18) and (23). Concerning the remaining-regions outside the last column of Table | we have listed the magnitudes of
(above or below this overlap it is important to note that, the correspondingi=0 renormalization energi€$, which
until now, we could not find any material or heterostructureare given by the energy separationg)/2, between the fitted
whose dispersion coefficient appeared to be significantlfz(0) positions and the points of intersection of the linear
higher than 3/4. However, there have been found already —c asymptotesk..(T)=E(0)— «(T—0/2), with the en-
several materials and heterostructures whose dispersion cergy axis,E..(0)=E(0)+ a®/2, (cf. Fig. 1 in Ref. 6.

efficients are indicative of small dispersitit®?20<A<1/3 According to our semi-empirical description of monotonic
[which is not covered satisfactorily by EQL8)]. That is, all  E(T) dependencies, there ismonotonicrelationship(A7)

A values estimated hereto from measuiel) data sets between the relative magnitude dipersion A (12), on the

lie within the range of applicability of Eq(23), 0<A<3/4  one hand, and the magnitude of thiervatureof the charac-
(cf. Refs. 2, 6, 20, 24 and see Table Consequently, Eq. teristic low temperature asymptoteg,(é<1) (cf. Figs. 2
(23) is of primary importance[superior to Eq.(18] and 3, on the other hand. Because to this, the quadratic
with respect to numerical analyses of a multitude of mono-dependence in the cryogenic region for a given material gen-
tonic E(T) dependencies associated with qualitatively dif-erally tends to be stronger as the dispersion coefficient gets
ferent dispersion regimes that are actually found inlarger. An instructive example of this is provided by compar-
experiment. ing the experimentaE(T) data fields for the indirect gap
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FIG. 4. Temperature dependence of the indirect excitonic band FIG. 5. Temperature dependence of the threshold energies of
gap,Eg4x, and of several threshold energies of phonon-assisted trarindirect phonon-assisted transitions observed by Alibel. (Ref.
sitions observed by MoneméRef. 36 near thel';5,— Xy edge of ~ 37) near thel’;5,—A; edge of AISh. The subscriptse® and “ a”

AlAs. The subscripts &” and “ a” stand for transitions involving an ~ stand for transitions involving an emission or absorption of a LO,
emission or absorption of a LO, TO, LA, or TA phonon. The curvesTO, LA, or TA phonon. The curves are a numerical fit of thieole
are a comprehensive numerical fit of twaoledata field using Eq.  data field using Eq(23) with a unique constellation of basic
(23) with a uniqueconstellation of basic dispersion-related param- dispersion-related parameters®, andA (cf. Table ).

t (C] dA (cf. Table ).
etersa, , anda (cf. Table ) proximately the sam&—0 positions(higher by about 0.1

lI-V materials AIAS® and AISE” (see Figs. 4 and 5, respec- meV) in combination with basic parameters of=3.91
tively). The corresponding temperature dependencies of the 10 % eV/K, ®=258 K, andA=0.50. The small difference
indirect excitonic gap in both materials are given in terms ofof only 0.3%, 0.8%, and 4% between the magnitude®,
threshold energies of TA, LA, TO, and LO phonon assistedand A, respectively, as resulting from the alternative fits by
transitions(where the indices & and “a” correspond to  Eq. (18) vs Eg.(23), represents the internal consistency of
processes of phonon emission and absorption, respedgtivelythe analytical apparatus developed in Sec. Il within the re-
Taking the corresponding phonon energies to be essentiallyime of intermediate dispersion, HA<1#3.
constantwithin the temperature regions of consideration (0  For AlSb (Fig. 5 we obtained from fittings by Eq23)
<T<300K) we have performed, consequentsimulta- the parameter valuesr=3.45x10 % eV/K, ©=205 K,
neousfittings of the E(T) curves by aunique material- and A=0.76 (Table ) in combination with E og(0)
specific set of dispersion-related parameier®, andA, in =1.7256 eV, E1od0)=1.7203 eV, E 5.(0)=1.7057 eV,
combination with a set of separate zero temperature poskEa(0)=1.6951eV, Eqa,(0)=1.6793 eV, E aa(0)
tions, E;(0), for theindividual phonon assisted transitions. =1.6683 eV,E1o{0)=1.6538 eV,E, 5,(0)=1.6473 eV for

In the case of AIA{Fig. 4) we have obtained from fittings the individual phonon emission and absorption processes.
by Eq. (23) the parameter valuesr=3.90x10 4 eV/K, From this set of zero temperature threshold positions there
0=256 K, and A=0.48 (Table ) in combination follows a value ofEgy,(0)=1.6869 eV for the excitonic gap
with E| 0e(0)=2.2792 eV, E1o0)=2.2705 eV, E A:(0) (no-phonon transitionsAn alternative fit of the whole data
=2.2563 eV,Eqa(0)=2.2426 eV, andEy,(0)=2.2297 eV  field by Eq.(18) gave again nearly the sarile~0 positions
for the individual phonon emission processes and the excidower by 0.1 meV in combination with the basic parameter
tonic gap (no-phonon transitions The extrapolated zero valuesa=3.42<10 % eV/K, ®=199 K, andA=0.74. The
temperature positions for phonon-absorption assisted transinoderate difference of about 1% to 3% between the magni-
tions areE1x,(0)=2.2153 eV andE 4,(0)=2.1783 eV. An tudes ofe, ©, andA for Eq. (18) vs. Eq.(23) confirms the
alternative fit of the whole data field by E¢L8) gave ap- compatibility of both analytical approximations even for the
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case of large dispersiot,>1A/3. We should note that some of the material-specific param-
By comparing now, in more detail, the low-temperatureeter sets in Table | are still relatively uncertain. These are
sections of thé=(T) curves for both materials, we observe agiven in parentheses. This is mainly due (b} the relative
markedly weaker curvatur¢second derivative for AIAs  sparsity and/orin-accuracy of experimental data points in
(Fig. 4) than for AISb(Fig. 5). This qualitative difference in the cryogenic region (e.g., for diamond® AIN,3 InN,*°
curvatures is directly connected with the quantitative differ-inAs*® InSb*® and CdSe&?® which involve uncertainties in
ence between the drops of the respective excitonic gaps methe dispersion coefficient of up to 20% and/or(2) limita-
sured in the cryogenic region. We see, e.g., from Figs 4 antlons of experimental measurements to temperatures consid-
5 that the drop€£(0)—E(50 K) amount to about 2.4 meV erably lower than the corresponding Debye temperat(ice
and 4.6 meV, for AlAs and AISb, respectively. The relatively T<300 K, for AIN3® and InN*® which involve uncertainties
large differenceby a factor of about Rcan be readily un- up to 20% for the limiting sloper and the effective phonon
derstood to be a consequence of the largely different magntemperatured).
tudes of the dispersion coefficient in both materials. To this For most materials listed in Table(éxcept for nitrides
end, we consider the analytical form of the low-temperaturehe uncertainties i and® values are generally limited to a
asymptote which, according to E(R3) or (18) [as well as  few percent. This applies in particular to &eGaAs#*2
Eq. (14) in combination with Eq(A7)], reduces to the qua- GaSbh*** InP*4" InAs*® InSH*®*° as well as to zinc and

dratic dependence cadmium chalcogenide$;®® where the experimental mea-
surements managed to be extentbegondthe Debye tem-
E(T)—E(0)—cT?, peratures. Fitting the data sets for the latter cases by using
Eq. (18) gavea andO values different from those in Table |
1 d’E(T)| A% [of Eq. (23)] by less than 0.5% and 1.5%, respectively.
where c=-3 a2 |, 0:3(1+A2)®' It is necessary that measurements be made up to the vi-

cinity of the effective Debye temperatures, i.e.,
(24 Tpha=0p,°%*8to enable a reliable determination @fand©®

governing the high-temperature behavior, Etf). This can
Inserting thea, ©, andA values listed for both materials in be well illustrated by the differenE,(T) and Eg,(T) data
Table | we obtain for the curvature coefficient the valees sets available for silicon. We have reproduced in Fig) the
=0.95< 10 ® eV/K?, for AlAs, andc=1.85x10 ® eV/IK?,  E4(T) and Eg4(T) data points given in Refs. 32 and 33,
for AlSh. The difference of a factor of about 2 between therespectively. The simultaneous fit of both data sets using Eq.
curvature coefficients (24) explains the corresponding dif- (23) gave the parameter values=3.23x10 * eVIK,
ference inE(T) drops measured for these materials in the®@=446 K, and A=0.51 [in combination with a zero-
cryogenic region. At the same time we find that the ratiostemperature position oEy(0)=1.1701eV for the funda-
a/® [occurring as proportionality factors m(24)] are 1.52 mental band gap, and an extrapolated value Egf(0)
X107 % eV/K? for AlAs and 1.6 10 ® eV/K? for AISb, =1.1564 eV for the excitonic gdpAn alternative fit by Eq.
which corresponds to a difference of only about 11% be<{18) gave the sam&—0 positions with parameter values
tween these materials. This means that it is the differencer=3.15x10 % eV/K, ®=423 K, andA=0.50. Comparing
between thalispersioncoefficientsA of about 0.48 for AIAs  both parameter sets we notice differences of about 3%, 5%,
and 0.76 for AISb which, by virtue of the dispersion-relatedand 2% between the magnitudas®, and A, respectively.
factor A%/(1+A?) (in Eq. (24)) of about 0.19 for AlAs and  Similarly small differences are also found with respect to
0.37 for AlISb, represents thmain cause for the relatively earlier fittings of the same dat@Fig. 6(@)] using the
large difference between the respective magnitudes(6f) p-representatichor the two-oscillator modet* At the same
—E(50 K) drops. In this connection it is worth noting that, time we must observe that, in contrast to the above require-
except for AISb(and possibly still for InAs, where the avail- ment of T,,,,.=0p, the experimental cut-off temperattief
able E(T) dat4® are too sparse for an unambiguous quanti-Tma,=415 K for theE,,(T) data sefcf. Fig. 6a)] is consid-
fication), the material-specifi€(0)— E(50 K) drops forall  erably lower than the effective Debye temperatur®,
other IlI-V materials listed in Table | arsmallerthan 3 ~670K, in Si. This means that, even with good agreement
meV. We can thus look upon AISb as an extreme case, wheilgetween fittings of different dispersion related models,d¢he
the significantly strongeE(0)—E(50 K) drop compared to and ® values estimated hitherto can not yet be considered
other IlI-V materials is due to an exceptionally large degreedefinitive.
of dispersion,A=3/4. As we see from Table I, this value  The degree of uncertainty due to the limitation To
represents the maximum among thealues obtained for all <415 K of theEg,(T) data set of Ref. 33 can be estimated
group IV, 1lI-V, and 1I-VI materials considered. According by examining otheE,(T) data sets for Si, e.g., in Refs. 59
to Eq.(A4), a dispersion coefficient of ordé&~3/4 is asso- and 60, which cover significantly higher temperatures. This
ciated with an order of=~5/2 for the model-specific param- is done in Figs. @) and c), in which we see that the total
eter in Eq.(Al). This corresponds to a strongliecreasing energy gap shift from 0 to 800 K amounts to about 0.18 eV
weighting functionw(e)o(1—e/e,)¥? (cf. Fig. 1), indicat-  and 0.20 eV. This corresponds to a difference of about 10%
ing an unusually strong contribution @w-energy(acousti- between the estimated magnitudes of limiting slopes
cal) phonons to the gap shrinkage effect in AlSb accor-  (Table Il). According to Ref. 60, the magnitude of tempera-
dance with Ref. 24 ture variation of the gap was somewhat underestimated in
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FIG. 6. Fittings of variou€(T) data sets available for silicon using Eg3). The insets show typical errors in the cryogenic region that
arise from the Bose—Einstein mod@b) and Varshni's formuld26). (a) Fundamental band gap dagg,(T), given by Bludalet al. (Ref.
32; dotg and excitonic gap datdg,(T), given by Macfarlanet al. (Ref. 33; circles (b) Excitonic gap shift datak,(0)— E4.(T), given
by Hartunget al. (Ref. 59. (c) Excitonic gap shift datak,,(0)—Eg(T), given by Alexet al. (Ref. 60.
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TABLE Il. Parameter sets obtained for silicon by fittings of the gap shift data)dRefs. 32 and 33cf. Fig. 6a)], (b) Ref. 59[cf. Fig.
6(b)], and(c) Ref. 60[cf. Fig. 6(c)] using the dispersion-related four-parameter forn@m@ compared withag and ®y values from the
Bose—Einstein expressid@5) and ay, and 8 values of Varshni's formul&26).

all0™4 0 agll0* Op ayl10™4 B

Refs. Fig. (eVIK) (K) A (eVIK) (K) (eVIK) (K)
32,33 Ga) 3.23 446 0.51 2.82 351 5.37 746
59 6b) 3.02 440 0.61 2.87 381 3.36 357
60 6(c) 3.33 440 0.40 3.26 415 3.81 392

Ref. 59[Fig. 6(b)] due to an insufficient line shape analysis non temperature®, by Eq. (25 reaches 13% or 21%, re-

procedure. One can see also from Fi(c)@hat thea value  spectively, for the data set in Fig(e§. (For a discussion of

detected from the data set of Ref. 60 has an uncertainty dhe analogous underestimation of both quantities for hexago-

about 5% due to the relatively large uncertaintiep to  nal GaN see Ref. 58Furthermore we see from Table Il that

about 15 meV of the experimental data in the region be- the changes ofg and ® values from case to ca$€igs.

tween 700 K and 800 K. The three differemtvalues(Table  6(a) to 6(c)] are considerably larger than the respective

II) taken from the three data sets of Figga)&o 6(c) yield changes of the associatadand ® values. This increase of

thus the limiting slope in Si of abouiw=(3.2+0.2) parameter uncertainties arising from E5) [in comparison

X 10 * eV/K (with a remaining uncertainty of about 6% with Eqgs. (23) or (18)] is plausible, in view of the obvious
For the effective phonon temperatur®, we see from inadequacy of a model that assumemishingdispersion,

Table Il that the estimated magnitudes are nearly the sam&g=0, especially when it is applied to a material like silicon

for all three data sets. However, this approximate equalitghat shows a relatively large degree of phonon dispersion,

might be accidental. The above mentioned alternative fit oiA=0.5 (cf. Tables | and ).

the data of Refs. 59 and 6@ig. 6(a)] using Eq.(18) gave a Consider finally Varshni's ad hoc formutd,

value of =423 K (which is equal to that obtained by an )

earlier analysis using therepresentatich. Summarizing all Ey(T)=E(0)— ayT (26)

the results for silicon, we come to an approximate value of v B+T’

0=(440=20) K for the effective phonon temperature. The Within this model. the parameter.. should aqain represent
associated dispersion coefficient amountsAts(0.5+0.1) ithin thi ' P v uld agal pres
the limiting slope, and the magnitude of the param¢iés

(Table 1l). The relatively large range of uncertainty inis . .
due to the scatter in the experimental points of Refs. 59 angggﬂi’gl(ngflf\éﬁ;ﬁe%eacr?ar:;ﬁ’igﬁsr?ggc g}eﬂ?sebr%iéglms_ee
60 [insets to Figs. &) and c)] in the cryogenic region. gec. V) With respect to the low-temperature region Bf

E(T) data analyses performed using a dispersion-relate 3 . 3
(four-parameteranalytical model like the present oriBec. <p8 we see thaEy(T) (26) tends to ajuadraticasymptot®

lll) are, as a rule, physically reasonab!e and numeripally EW(T)—~E(0)—c,T?, (27)
much more accurate than those applying a conventional

(three-parametemodel like Varshni's formul&’ or a Bose— Wwherec,=a\ /S represents the model-specific curvature co-
Einstein expressiofi.'® The latter represents the limiting efficient [the counterpart to the coefficientin Eq. (24)].
case of completely vanishing dispersioh,—~0. It corre- However, many numerical applications have shown that the

sponds thus to a reduction of E@3) to the limiting forn®>  magnitude of the dispersion-related curvature coefficent
(24) is (for 0<A=<3/4, at leastsignificantly smallerthan its

agBg counterparty, (27) associated with Varshni's parameter val-
E(T)—E(0)— exd05/T)—1 uesay, andp. This inequality between curvature coefficients,
B c<cy, for the low temperature asymptotes, E24) vs Eq.
agB®p Op (27), explains why experimentdt(T) data and calculated
=E(0)— 2 cot o7 1] (25 E\(T) curves in the cryogenic region almost never coincide

[insets to Figs. @) to 6(c)]. These systematic deviations are
This model shows glateau in the cryogenic regionT  closely related to the enormous numerical uncertairifies
<50 K, which is seen from the insets to Fig$ajeto 6(c) to  stabilities of Varshni's parameter values, and 8. We see
be in clearcontradictionto the approximatelyuadraticde-  from Table Il, e.g., that the,, and 8 values for the data sets
pendence, E(0)—E(T))xT? (24), observed in this region shown in Figs. 6) and Gc) differ by factors of about 1.4
(not only for Si, but also for most other materials listed inand 1.9, respectivelgwhereas the associatacand® values
Table [; cf. Ref. 5. From Table Il we see that, for any one of are nearly the sameMany least-mean-square fittings using
the three data sets in consideration, the fitted magnitudes &farshni’'s formula show a general tendehayf ay and 3
the Bose—Einstein parametetg; and®g, are considerably values to be larger the lower the experimental cut-off tem-
smaller, ag<a and ©z<O, than their dispersion-related peratureT ., Was chosen to be. Thus, thesg(T .0 and
counterpartsy (3) and® (11). Note that the relative under- B(T,,.) values are artificial, and cannot be considered as
estimation of the limiting slopey, and of the effective pho- characteristic parameters of the physical system. In fact these
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0.00 pog, cryogenic region (8T<50 K) which is crucial for a reli-

,,,,,,,,,, Eq. (14/B.11) for y=3 (A=1.73) able determination of the dispersion coefficient, neither of

— Eq. (14/B.11) for y=5.5 (A=1.25) these models provided an adequate fit. The systematic devia-

T gg 555) @=1 tions in the cryogenic regiofinset to Fig. 2 in Ref. 5Bare

because the two-oscillator moéttends to a plateau and the
power law modéP goes to a fractional power dependente,
[E(0)—E(T)]=T*4 while Varshni's model yields a qua-
dratic low-temperature asymptotg7). Now, in contrast to
the earlier models of Refs. 20 and 24, the dispersion-related
models developed in the present study involve, for Am0,
a quadratic low-temperature asymptot@4), the actual cur-
vature of which increases monotonically with increasing
The present analytical apparatus can thus be expected to per-
mit a more adequate fit of hypothetice(0)—E\/(T) data
points(cf. Fig. 7 and Appendix Cand a more correct deter-
mination of the dispersion coefficienh,,, associated with
Varshni's model(26).
Let us first estimate the magnitude &f, analytically. To
this end we compare the low- and high-temperature asymp-
totes of the present mode{Sec. Il and Appendices A and
B) with those of Varshni's functiori26). This allows us to
020 40 80 w0 ascertain parameter relationships that should assure coinci-
[ B dence of the respective asymptotes. Consider first the limit-
600 800 1000 ing region ofhigh temperaturesT> @, where theE(T) de-
T (K) pendences tend generally fmear asymptotes, namely:
E(T)—E(0)—«(T—0/2), according to the dispersion-
FIG. 7. Fittings of a set of hypothetical Varshni data points rg|ated theory[Eq. (13)], and Ey(T)—E(0)— ay(T—f),

[following from Eq. (26) for ay=5x10* eV/K and5=100] us-  que to Varshni's modelEq. (26)]. We see that both linear
ing qualitatively different dispersion-related models. These mOdEI%Isymptotes are coincident just ®Br

are represented, first, by E(C1), which corresponds to tha=1
limit of the analytical model developed in Sec. (Wppendix A
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and, second, by E@14) in combination with curve shape functions ay=a With B= CR (28
of type (B11), that represent a hypothetical regime of extremely
large dispersionA>1 (see Appendices B and)C Consider now the low-temperature asymptd®$ and(27).

These asymptotes are coincident when the corresponding

physically unreasonablE,,.,-dependencies can even lead to curvature coefficients=7*A%a/(3(1+A%)0) in Eq. (24

infinite a, and B values, or a simultaneous change of bothandcy=ay /B in Eq.(27) have the same magnitude, i.e., for
parameters tmegativevalues, in cas@s®whereT . IS Sig- o
nificantly lower than half of the Debye temperature. ay_2a A

B0 3(1+A%)0

V. ASSESSMENT OF VARSHNI'S FORMULA [in accordance with Eq28)]. The latter relation is satisfied
_ _ _ o just for A%/(1+ A?)=6/72, which corresponds to an effec-
_ Let us give a physmal explanation for the notorious incon-;ye magnitude for the dispersion coefficient of
sistency of Varshni’'s parameter values, based on the obser-

vation that Varshni's model corresponds to an unusually 2 -1z

large degree of phonon dispersiak,>1, which has never A—>Av:(€—1) =1.2452. (30
been found in experimer(tf. Table ). A preliminary esti-

mate of the magnitude of the dispersion coefficiéng, as- The crucial feature of the latter result is due tda value
sociated with Varshni'ad hocmodel was made in Ref. 58. being eversignificantly higher than unityat variance to the
Choosingay,=5%10"* eV/K and =100 K for the param-  preliminary estimation® giving values of about unity

eters occurring in Varshni's formul@6) we have generated Strictly speaking, the analytical model developed in Sec.
a series of samplg(0)—E,(T) data pointgopen circles in  lll (Appendix A was limited a priori to an interval of
Fig. 7) for a temperature interval from 0 up to 261000 K.  0<A<1. This raises the question of whether, in view of the
Least-mean-square fittings of these artificial Varshni databove use of the model-specific expresdia4) for the low-
points were performed in Ref. 58 with two qualitatively dif- temperature curvature coefficient,the resulting estimation
ferent dispersion-related models, namely, the two-oscillatof30) for the Varshni dispersion coefficient is internally con-
modef* and the power law modéf. Both fittings gave mag-  sistent. To clarify this question we have considered in Ap-
nitudes for the dispersion coefficient of about unity,~1.  pendk B a class of weighting functions (&) (B7) as rep-
However, it was also seen there that, particularly for theresentatives for a hypothetical regime of extremely large

Cy= C (29)

085201-12



DISPERSION-RELATED DESCRIPTION B. .. PHYSICAL REVIEW B 66, 085201 (2002

dispersionA>1. Comparing the low- and high-temperature APPENDIX A: MODEL FOR SMALL TO LARGE
asymptotes of the correspondifigypothetical shape func- DISPERSION (0sA<1)

tions 7,-,(£) (B11) for A>1 [i.e., Egs.(B12) and (B13)],
with those of the above considered shape functigpsy(§)
(A6) for 0<A<1[i.e., Eqs.(A7) and(A8), respectively we o e
see that the respectivg,(£¢) asymptotes are precisely the W, (g)=—- ( 1— —
same. This proves the internal consistency of the above esti- €o €o
mation(30) of the magnitude oA also within the analytical g, up to a certain cut-off energy,Qs<e,, andw,(s)
model developed in Appendix B for the correspondihg-  — elsewherdFig. 1). The calculation of the corresponding
pothetica) regime of extremely large dispersioh>1. model-specific moment&l0) involves certain definite inte-

_Inorder to realize that the estimatag value(30) reflects  grals of which the analytical solutions are known from stan-
in adequate way not only the asymptotic behaviors of Varshyard mathematical literature to be given by

ni's hypotheticalE\(T) curve (26) but applies, in fact, to
arbitrary temperaturegstarting from the cryogenic region, fl I'(o)T'(m+1)

Consider a class of weighting functions of type

o—1
. >0, (A1)

0=<T<p, through the middle regior,~ 8, up to very high X™(1—x)7 " tdx= (A2)

; ) 0 I'oc+m+1)
temperaturesT> B), we have performed in Appendix C a
detailed numerical analysiteast-mean-square ffiof Varsh-  [whereI'(m+1)=m!, for m=0,1,2,..]. In accordance with
ni's hypotheticalE,(T) curve (Fig. 7) using the analytical the standard relatiol’(z+1)=z-T'(z) for I-functions we

model developed in Appendix B for the hypothetical regimepptain thus for the model-specific momeiit)

of extremely large dispersiofd>1). As a final result of this

detailed numerical analyses(in Appendix Q we have ob- mleg

tained a value of\,=1.2535, which deviates from thana- (eM)= (orm)-(o+m=1) ... (o 1)’ (A3)

lytical value (30) by only about 0.7%. Thus a magnitude of

about Ay=1.25 (within an uncertainty lesser than0.0)  This expression reduces tés)=g,/(c+1) and (&?)

can be considered as a definitive value for the dispersior-2¢2/((o+1)(o+2)), for the first and second moment,

coefficient associated with Varshni's formu26).>’ respectively. The dispersion coefficigil?) is thus given in
terms of the curve shape parameter0 by

VI. CONCLUSIONS p 2A2

In summary we can say that Varshni's mo¢28) assumes A=1\/;5 i€, converselyo=:—7r, (A4)
an extremely largedegree of phonon dispersion, which is
unrealistic based on detailed least-mean-square fittings of exand the effective phonon temperature Ebfl) is related to
perimental data sets<0\<3/4. This applies not only to the ©,=¢,/kg by
group IV, llI-V, and I1-VI materials considered in this ar-
ticle. In fact, in the large number of available experimental 0= 1 0 _1—A2®
E(T) data sets for different classes of binary and ternary o+l % 1+A%7°
semiconductor materialgn bulk) or heterostructures, no in- ) ) o
dication of very large dispersiom,>1, could ever be found. [in accordance with EqA4)]. The relative simplicity of re-
Thus, there is hardly a chance for Varshrits hocmodel to  lationships(A4) and (A5) between the auxiliary quantities
give a physically reasonable interpretation of the gap shrink®o ando, on the one hand, and the basic dispersion-related
age effect in such a system. Sample analyses®eaf.the ~ Parameter®) anda, on the other hand, enables us to repre-
exciton energy data given by Mudrgt al®? for ZnAs,, of ~ Sent the fln_al results directly in terms of the latfef. point
the photoluminescence peak positions given byetal®®  (4) quoted in Sec. ]I . _
for a Ga04(Gd,05) thin film, or of the excitonic peak po-  Inserting the model functiow,(¢) (A1) into Eq.(5) and
sition data given by Homs and M&tifor the layered Il1-vI  including Eq.(A5) we can write theE(T) dependences) in
material InSe, have shown that these are associated with tifegeneral fornm(14), where the characteristidimensionless
regime ofmoderate(intermediat dispersiorf, 0.3<A<0.5  shape functiony is defined, in terms of the dimensionless
(as are the majority of the materials listed in TableThus in ~ ratio §=2T/© and the parametesr>0, by integrals of the
view of the much larger dispersion coefficieny=1.25(30)  form
of Varshni's model(26) and the vanishing dispersion coeffi- )
cient, Ag=0, for the Bose—Einstein modé25), neither of _
these conventional three-parameter models is capable of pro- 7(§)=20(0+1) jo dx 2(0c+1)
viding physically adequate interpretations B{T) depen- ex% Y
dences. In contrast, the novel four-parameter expre$2R)n
owing to its large range of applicability=0A=<3/4, is found 1- &z
to be well suited for numerical analysest(T) data sets for o , [2lo+ i z 2(c+1)
a large variety of binary and ternar_y semiconductor mater_lals 200+ 1) fo z exp(z)— 1
and heterostructures. Corresponding sample analyses will be
published in forthcoming papers. (AB6)

(A5)

x(1—x)7 1

o—1
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The latter representation shows that, due to the rapid increadéneir first derivatives are given by

of the exponential exg( (in the second representatjon L
more than 95% of the resulting value of the integral comes ,, . o—1 Vs

from the interval G<z<5. Within this interval, for suffi- u'(x)=-o(l-x) and »'(x)= exp2(oc+1)x/€é)—1
ciently low temperatures&/(o+1)<1, the term &z/[2(o

+1)] is much smaller than unity. Neglecting hence this term _ (o +1)X

and extending the range of integration to infinity we come to 2&(sinh2(o+1)x/€))%"
a limiting value of72/6 [=Eq. (7) for n=0] for the integral
occurring in the second representation of E46). The cor-

(A10)

Evaluating, henceforth, the second integral by parts,

responding(quadrati¢ low-temperature asymptote is thus 1 1
given by f dx u’(x)v(x)z[u(x)v(x)]ic—f dx u(x)v'(x)
Xc Xc
wloc  ,  wA? (A11)
70(6)= 12(c+1) ¢ =6(1+A2) ¢=male=<l) we obtain for the total integralA6) an expression of the
(A7)  form
[the latter equality being in accordance with E44)]. « X(1—x)7" 1
For sufficientlyhigh temperaturesz=2(c+1)x/(é<2(o 7,(€)=2(a+1) UJ ‘dx
+1)/é<27, we can make use of the Taylor expansion o exp2(ot+1)x/§)—1
Zl[exp@—1]=1—22+7%/12—... . Taking the known solu- X (1—x0)"
tions for the three lowest-order integrdte=0, 1, and 2 of ¢ c
type (A2), we come to an intermediate-to-high temperature exp2(o+1)x./§)—1
expression for the characteristic shape function of the form 1 (1-x)"
+ | dx
(i1 2(o+1) i1 1+A2 B Lc exp(2(oc+1)x/§)—1
A= ¢ 1t /=61t ——= >
! 3lo+2)¢ ¢ ™ 8 (0+1) (1 X(1-x)

2¢ )X (sinh2(o+ D)x18))2["
[in accordance again with E¢A4)].
Consider further the problem of reliabteimericalcalcu- (A12)

lations of the shape function,(¢) (A6) for any £ [i.e,, in  The integrands in these partial integrals are seen to be free
particular for the middle regiony<(o+1)/<10, where the  from singularities(for any o>>0). Thus the latter representa-
7,(€) dependence deviates significantly from asymptotesjon (A12) is suitable for numerical calculations of shape
(A7) and (A8)]. From Eq.(A4) we see that for moderate fynctions, 5,(£), within the whole region of dispersion co-

i iatedi i —3-U g ; .
(small to intermediatedispersion, <A <A =3""2 the pa-  efficients, 6<A<1 Eq.(A4), associated with the model func-
rametero ranges within the interval Qo<<1. The corre- oy w (&) (A1) in consideration.

sponding weighting functions (&) (Al) are monotonically
increasingwith increasing phonon energyand have ain-
gularity at e —¢, (cf. Fig. 1). This corresponds to a singu-
larity of the factor (1-x)“ "t in Eq. (A6) (in the first version
of integral representatiopgor the characteristic shape func- Let us consider first ther—c limit of the analytical
tion, 5,(£), at the upper end— 1, of the integration inter- model displayed in Sec. lll which, according to E@4),
val. Consequently, the representatiéi®) cannot be used for should correspond just to a magnitudedef-1 for dispersion
numerical integration in cases of moderé&enall and inter-  coefficient. Within this model, the cut-off energy, [in Eq.
mediate dispersion, 2A<3~12. For the sake of reliable (A1)] can be represented in terms of the paramete0
numerical calculations of integrals of tyg@6) it is thus and the associated average phonon endeyyas ,=(o
necessary to bring the upper section of these integrals, by an1)(e) [in accordance with EqA3)]. Consequently we can
integration by parts, into a form where the transformed intetewrite the weighting functiomv,,() (Al) in the equivalent
grands are finite everywhefganishing atx— 1). form

Let us denote by. a point ranging somewhere in the
middle region between the lower and upper boundaries of B o €
integration, 6<x.<1 (e.g.,x.—0.5), in EqQ. (A6), and con- Wole)= (o+1)(e) (1_ (o+1)(e)
sider the total integralA6) as a sum of two partial integrals . i .
for the sections &x<x. andx.<x<1, respectively. For the Refernng to Fhe; well-known representation of exponential
sake of a convenient transformation of the second integral bfnctions by limits of type
parts we introduce the auxiliary functions lim (15 x/p) =P =exg( —x), (B2)

pgvoo

APPENDIX B: MODELS FOR EXTREMELY LARGE
DISPERSION (A=1)

o—1

(B1)

X

exp2(c+1)x/é&)—1" wherex=e/{e) and the parametgy differs from the corre-
(A9) sponding quantitiegr=1 in Eq. (B1) by only =1 (this dif-

ux)=(1-x)? and v(x)=
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ference being negligible in the— oo limit), we see that Eq.
(B1) goes to the exponential function

1 €
Wy—1(8)=W,_.(g)= ®9X4 - @) , Og<oo,
(B3)
The latter is again properly normalizétb unity) and the

moments(10) are (¢™=m!{e)™, i.e., in particular(e?)
=2(g)?, for the second moment. This result confirfas-

PHYSICAL REVIEW B 66, 085201 (2002

, Where y>2. (B7)

&
1+ —
&

Y
W = —.
NE) o -

Observing that

fw L Temrmid
0 (1 1 T Ty or TAsmsy
(B8)

we see that the two nontrivial lowest-order momei) are

cording to Eq.(12)] the value indicated above for the asso-(&)=¢,/(y—1) and(e?)=2¢2/((y—1)(y—2)). Thedis-

ciated dispersion coefficienpA=1.

persion coefficien{12) is thus given in terms of the curve

Inserting Eq.(B3) into Eq.(5) and representing the aver- shape parametey>2 by
age phonon energy as usual in terms of the phonon tempera-

ture, ® =(g)/kg (11), we obtain for theE(T) dependence
again an expression of the general fofi4), where the de-
pendence of the corresponding shape functign ; on the

dimensionless argume=2T/0® is given by integrals of
the form

(=) Xexp —X)

77A=1(§)52 0 dXW
ex ?
-3
zexp — =
1 (=) 2
=§§2JO dz 7)1 " (B4)

2

—=, l.e., converselyy= A7

A= V=2

(B9)
and the effective phonon temperatufd) is related to®,
=¢g,/kg by equation

o=t o,-2"tg B10

=5-1%7 871 O (B10
Inserting the model functiofB7) into Eq.(5) and observing
Eqg. (B10) we can write theE(T) dependencéb) again in the
general form(14) with a characteristic shape function
however, that is given now bgequivalent integrals of the
form

Representing the Bose—Einstein factor in the latter integraﬁy(f)EZV(Y_ )

by the expansion

©

(expz)—1) 1=, exp—nz)

(BS)

(which is convergent for ang>0), we can readily perform
the integration for the individual exp(n2 terms. In this way
we transform the shape functiop, —1(£) (B4) exactlyinto a
series expansion of the form

1
a2 (B6)

n+§

1 o
ma-a(=582
n=1

A series of numerical values is represented by the squares |

Fig. 2. Comparing thesg, - 1(&) values with Varshni's char-
acteristic shape functiom (&)= &%/(¢+1) (Fig. 2, we see
that the latter shows an evestronger curvature than

7a=1(§) (B6). This is an indication for the effective disper-

sion coefficient associated with Varshni’'s mod26) to be

somewhathigher than unity, Ay>1. For a more accurate
estimation ofA,, we need, consequently, an analytical model
applying to a(hypothetical regime of extremely large dis-

persion,A>1.
A convenient choice for an analyticA®>1 model, which

xfwd X
o &% exp<2<y—1>x)_l}

(1+x)7*L ;

_ 0% 5 (°°)d z
“2nth Y E )Y” o
soon) w21l

(B11)

The second representation pf( &) shows[in analogy to the
counterpart fory,(£) in Eq. (A6)] that, due to the rapid
increase of the exponential, exp(more than 95% of the
resulting value of the integral comes from the intervat O
<5. Within this interval, for sufficienthylow temperatures
['@i.e., here(y—1)/£>10), the termé&z/(2(y—1))] is small

compared to unity. Neglecting this term we come again to a

limiting value of 72/6 [=Eq. (7) for n=0] for the integral
occurring in the second representation of EfL1). The cor-
responding (quadrati¢ low-temperature asymptote reads
thus, explicitly,

2 WZAZ

Ty _

can be looked upon as a natural extension of the model fung¢in accordance with EqB9)]. An important feature of Eq.
tionw, (&) (Al) considered abovgor 0<A<1, in Appendix  (B12), particularly with respect to the analytical study in Sec.
A and Secs. Il and 1Y, is given by a weighting function of V, is the perfect coincidence of the asymptojg- 1(£<1)
type (B12) for the hypothetical regime of extremely large disper-
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sion with its counterparyy,~1(£<<1) (A7) for the physi-

PHYSICAL REVIEW B 66, 085201 (2002

Er—1(T) curve(Cl) tends to aE,_1(T—0) limiting posi-

cally realistic regimes of small to moderately large disper-tion which is located about 0.58 mebelow the original

sion (Secs. Il and IV.
For sufficientlyhigh temperaturesz=2(y—1)x/{<2(y

E\(T—0) position of the Varshni curve. A small deviation
like this might appear to be almost negligible in experiment,

—1)/§<2m, we can again make use of the Taylor expansionsince experimental uncertainties, even in The 0 limit, are

zl[exp@)—1]=1—272+7%/12—.... Substituting the param-
eter y>2 by the corresponding dispersion coefficidnfac-
cording to Eq. (B8)] we come, formally, again to an
asymptotic shape function expression of the usual f@8),

2(y—1) 1+A?

WO e e

=nr=1(6>1).
(B13)

We wish to point out that, within the frame of thiypotheti-
cal model for extremely large dispersiof>1, it is not pos-

often of the same order. However, we also see from the inset
to Fig. 7 that the curvature of thg,(T) curve in the cryo-
genic region (6<T<50 K) is about 14% stronger than that
of the E5_41(T) curve (C1). Thus we are concerned again
with systematiadeviations indicating that the effective dis-
persion coefficienf\,, associated with Varshni's model must
be at leastarger than unity,Ay>1.

We have considered in AppemxdB a class of weighting
functionsw,(¢) (B7) for extremely large dispersiom\>1,
which have the convenient property of approaching in the

sible to construct a complete high-temperature series expan; o limit the same(exponential function (B3) as the pre-

sion in analogy to Eq(9) by adding furtheré™" terms,n
=3,5,7,..., to Eq(B13). This is due to the fact that, depend-
ing on the actual magnitude of the parametet 2+,
the corresponding higher-order momef#s"y, m> 1y, tend
to infinity.

APPENDIX C: DISPERSION-RELATED FIT OF
VARSHNI'S HYPOTHETICAL E(T) FUNCTION

First of all we can clearly exclude the eventuality oha

vious weighting functionw,(g) (A1) (Sec. lll) in the g—»
limit. This choice (B7) assures automatically eontinuous
change of fitteda and ® values when we pass from the
physically relevant dispersion region<@ <1 to the hypo-
thetical regionA>1. Taking hence the shape functiajé)
for the E(T) dependencg¢in Eq. (14)] in the form of the
integral representation,(£) (B11) and fixing preliminarily
the shape parameter tg=3 we have performed a three-
parameter fit of the sam&(0)—E,/(T) data pointgFig. 7).

value lower than unity, e.g., by performing a numerical fit of The resulting parameter values are=5.026x10 “ and

the hypotheticalE(0)—E\(T) data points(Fig. 7) on the
basis of the model developed in Appendix®ec. Il). Using
Eq. (14) for the E(T) dependence along with the exdt-
tegra) representatioiA6) for the characteristic shape func-

0=213.4 K. The corresponding ratiosy,/a=0.995 and
B/®=0.469 are again in good agreement with analytical re-
lations (28). Comparing the latter parameter ratios for fixed
v=3 [which corresponds to a dispersion coefficient fof

tion, 7,(£)=7,(2T/0), we are concerned with a least- = 312=1 73 (B9)] with those quoted above for fixetl=1
mean-square process involving an unlimited increase of thge see that their relative deviations from the theoretical ideal

curve shape parametes;,—. The latter corresponds, ac-

cording to Eq.(A4), to an approach of the dispersion coeffi-

cient just to unity’® A—1. In this limit (see Appendix B the
weighting functionw,(g) (Al) reduces to an exponential,
wy—q(g)xexp(—ele)) (B3). The latter enables a transfor-
mation of the integralB4) for the corresponding shape func-
tion, 7A-1(&), into a series expansiaB6). From the latter
follows, in combination with Eq(14), for the E(T) depen-

dence in this special case a series expansion of the relative

simple form

E T)=E(O o1’ i T\ C1
a=1(T)=E( )‘nzl ntgl - (C1)
This expression is exafwith respect to the limiting weight-
ing function(B3)] and is convergent for any. Performing a
least-mean-squares fitting of th&(0)—E,/(T) data points
(Fig. 7) using the three-parameter expressi@i) we have
obtained the parameter valuesr=4.971x10 4 and

values ofay/a=1 andB/@=0.5(28) have nearly thesame
magnitude namely of about-0.6% for « and =7% for ©.
Of special importance is the finding, however, that these
model-specific deviations of parameter ratios happosite
signsfor these two alternative fits. An analogous statement
can also be made with respect to the deviations of fitted
E(T—0) limiting positions from the originak,/(T—0) po-
ition of the Varshni curve. In the case of the=3 (A
=39 the E(T—0) position is located about 0.55 meV
above E/(T—0) (cf. Fig. 7). Thus the model-specific devia-
tions of fittedE(T—0) positions from theE,(T—0) posi-
tion are found to have nearly theamemagnitude(=0.6
meV), but oppositesign, for theA =32 vs A=1 fit (cf. Fig.
7). These results of the two alternative three-parameter fits
suggest that the effective value of the Varshni dispersion co-
efficient should be located somewhere between these fixed
values, i.e., at least<tA,<3%? [in qualitative agreement
with Eg. (30)].

©=186.2 K.[Note that these values are nearly equal to those Finally, for a more conclusive determination af, we

obtained in Ref. 58 from a fitting of the same setE(0)
—Ey(T) data points by the two-oscillator modé].The cor-
responding ratios, /«=1.006 ands/®=0.537 between the
ay and B values chosen above and the fittednd ® values
are in reasonable agreement with analytical relati@ds At

have performed a complete four-parametel dising again

Eq. (14) in combination with Eq(B11)]. The corresponding
least-mean-square fitting procedure resulted in a dramatic
order-of magnitude decreasef the residual variance
(namely, by factors of about 340 or 230 in comparison with

the same time we see from the inset to Fig. 7 that the fittethose left by the three-parameter fits five=1 and A =312,
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respectively. Consequently we are concerned with an ex-

tremely fine dispersion-related fiFig. 7) which is almost
indistinguishable from Varshni’'s originak,(T) data set.
[Note that the maximum deviation between the giggi(T)
data set and the fitteB(T) curve, which occurs at—0,
amounts to only 0.036 meV. Note further that the standar
deviation is even somewhat smaller than 0.01 mebhe
associated parameter values ane=4.9955<10 4 and

PHYSICAL REVIEW B 66, 085201 (2002

0=196.12 K with y=5.501. This means, among other
things, a much closer approach than before of the associated
parameter ratiosg,/a=1.0009 andp/®=0.51, to their
ideal (theoretical magnitudes of 1 and 1/2 E¢28). At the
same time we infer from EqB9) that a fitted magnitude of
dy=5.501 corresponds to a dispersion coefficient of
=1.2535. The latter deviates from the ide@dheoretical
magnitude(30) by only about 0.7%.
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