OPTICAL PROPERTIES OF AMORPHOUS SIO₂-TIO₂ MULTI-NANOLAYERED COATINGS FOR 1064-NM MIRROR TECHNOLOGY M. Magnozzi^a, S. Terreni^a, L. Anghinolfi^a, S. Uttiya^a, M.M. Carnasciali^b, G. Gemme^c, M. Neri^{a,c}, M. Principe^d, I. Pinto^d, L.-C. Kuo^e, S. Chao^e, M. Canepa^{a,c} - a OPTMATLAB, Dipartimento di Fisica, Università di Genova, Italy - ^b Dipartimento di Chimica e Chimica Industriale, Università di Genova, Italy - ^c Istituto Nazionale di Fisica Nucleare, Sezione di Genova, Italy - ^d Dept. of Engineering, University of Sannio, Italy - ^e Institute of Photonics Technologies & E.E. Dept., National Tsing Hua University, Taiwan The use of amorphous, SiO₂-TiO₂ nanolayered coatings has been proposed recently for the mirrors of 3rd generation interferometric detectors of gravitational waves, to be operated at low temperature. The optimization of mirror designs based on such coatings requires a detailed knowledge of the optical properties of sub-units at the nmthick scale. To this aim we have performed a Spectroscopic Ellipsometry (SE) study of amorphous SiO₂-TiO₂ nanolayered films deposited on Si wafers by Ion Beam Sputtering. We have analyzed films that are composed of 5 and 19 nanolayers (NL5 and NL19 samples) and have total optical thickness nominally equivalent to a quarter of wavelength at 1064 nm. By flanking SE with ancillary techniques, such as TEM and AFM, we built optical models that allowed us to retrieve the broadband (250-1700 nm) optical properties of the nanolayers in the NL5 and NL19 composite films [1]. Regarding the NL5 sample, with thickness of 19.9 nm and 27.1 nm for SiO₂ and TiO₂ sub-units, respectively, the optical properties presented limited variations with respect to the thin film counterparts. For the NL19 sample, which is composed of ultrathin subunits (4.4 nm and 8.4 nm for SiO₂ and TiO₂, respectively) we observed a significant decrease of the IR refraction index for both types of subunits; this points to a lesser mass density with respect to the thin film reference. [1] M. Magnozzi et al., Optical Mat., 75, 2018 Keywords: Spectroscopic ellipsometry, Coatings, Multilayer, SiO2 thin film, TiO2 thin film