Springe zum Hauptinhalt
Professur Digital- und Schaltungstechnik
Objektdetektion mittels Deep Learning
Professur Digital- und Schaltungstechnik 

Objektdetektion mittels Deep Learning

Als Teil des Forschungsprojektes AUXILIA und diversen Industrieprojekten aus dem Bereich autonomen Fahren erforscht eine Arbeitsgruppe der Professur Digital- und Schaltungstechnik aktiv das Feld Objektdetektion mittels Deep Learning. Unsere Forschung fokusiert sich auf die Anwendung von Convolutional Neural Networks (CNNs) auf omnidirektionalen Bildern.

Abb 1: Detektionen in der Testwohnung
'
Abb 2: Detektionen in der Testwohnung

Die Abbildungen 1 und/oder 2 zeigen die Ergebnisse eines Objektdetektors in einer Laborwohnung der TU Chemnitz. Die Personen werden mittels eines CNN-basierten Objektdetektors in omnidirektionalen Bildern detektiert, die von an der Decke angebrachten Kameras stammen. Die starke Verzerrung und der außergewöhnliche Blickwinkel stellt eine hohe Herausforderung für den Detektor dar.

Aktuelle Forschungsschwerpunkte und offene Themen:

  • Den Detektor auf weitere Objekte erweitern.
  • Die Zuverlässigkeit und die Genauigkeit erhöhen.
  • Die Performance auf eingebetteten Systemen verbessern.
  • Andere technische Möglichkeiten als lineare CNNs finden, z.B. sphärische CNNs.
  • Featurerepräsentation von CNNs auf omnidirektionalen Bildern erforschen.
  • Objektdetektor auf synthetischen Datensätzen trainieren.

Veröffentlichungen

Titel Autor(en) Jahr
1 Unsupervised Domain Adaptation from Synthetic to Real Images for Anchorless Object Detection
16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5: VISAPP, 08.02.2021 - 10.02.2021, pages 319-327. - SCITEPRESS - Science and Technology Publications, 2021
Scheck, Tobias
Perez Grassi, Ana Cecilia
Hirtz, Gangolf
2021
2 Learning from THEODORE: A Synthetic Omnidirectional Top-View Indoor Dataset for Deep Transfer Learning
2020 IEEE Winter Conference on Applications of Computer Vision (WACV), Snowmass Village, CO, USA, 1-5 March 2020, pp. 932-941. - IEEE, 2020
Scheck, Tobias
Seidel, Roman
Hirtz, Gangolf
2020
3 OmniPD: One-Step Person Detection in Top-View Omnidirectional Indoor Scenes
In: Current Directions in Biomedical Engineering. - Walter de Gruyter GmbH. - 5. 2019, 1, S. 239 - 244
Yu, Jingrui
Seidel, Roman
Hirtz, Gangolf
2019