Jump to main content
Automation Technology
Publications
Automation Technology 

Publications

2020 - present

  • Schmidt, R., Rüter, J., Krause, S. & Schubert, S. (2025) Vision-based Self-Localization for UAVs Using Semantic Features and OpenStreetMap. In Proc. of Aerospace Conference (AERO). (accepted)

2015 - 2019

2010 - 2014

2005 - 2009

  • Krause, T. (2008) Patent: DE102007013147A1. (offengelegt am 18.09.2008)
  • Lange, S. (2008) Mono-Kamera-SLAM: Implementierung eines Verfahrens zur visuell gestützten Navigation und Steuerung eines autonomen Luftschiffes. VDM Verlag Dr. Müller
  • Lange, S., Sünderhauf, N. & Protzel, P. (2008) Autonomous Landing for a Multirotor UAV Using Vision. In Workshop Proc. of SIMPAR 2008 Intl. Conf. on Simulation, Modeling and Programming for Autonomous Robots, pages 482-491. ISBN: 978-88-95872-01-8
  • Peer, N., Vidal-Calleja, T., Lacroi, S. & Protzel, P. (2008) A Fast Visual Line Segment Tracker. In Proc. of 13th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)

Older Publications

Renner, J., Protzel, P., Hochberger, Ch. & Gatzka, S. (2004). Implementierung eines mobilen Java-Agenten in eingebetteten Systemen, Proceedings Embedded World Conference 2004, Nürnberg, S. 455-466.

Krause, T., Lima, P. & Protzel, P. (2003). Flugregler für ein autonomes Luftschiff. In Dillmann, Wörn, Gockel (Hrsg.), Tagungsband Autonome Mobile Systeme 2003, Reihe Informatik aktuell, Springer Verlag, S. 83-90.

Renner, J., Protzel, P., Hochberger, Ch. & Gatzka, S. (2003). Neue Perspektiven für die Teleautomation durch mobile Software-Agenten auf eingebetteten Systemen, Tagungsband der Embedded World 2003, Nürnberg, S. 611-622.

Kindermann, L. & Protzel, P. (2002). Physics without Laws - Making exact Predictions with data based Methods, Proceedings of the International Joint Conference on Neural Networks IJCNN 2002, pp. 1673-1677.

Kindermann, L., Lewandowski, A. & Protzel, P. (2002). Finding the Optimal Continuous Model for Discrete Data by Neural Network Interpolation of Fractional Iteration, Lecture Notes in Computer Science, LNCS Vol. 2415, pp. 1094-1099.

Kindermann, L. (2002). Neuronale Netze zur Berechnung Iterativer Wurzeln und Fraktionaler Iterationen. Dissertation, TU Chemnitz. Online Veröffentlichung der Universitätsbibliothek der TU Chemnitz unter http://archiv.tu-chemnitz.de/pub/2002/0154/

Lewandowski, A. & Protzel, P. (2002). Predicting time-varying functions with local models, Intelligent Data Analysis, Volume 6, Number 3/2002, pp. 257 ­ 265.

Sandner, F., Protzel, P., Berger, B. & Wolf, G. (2002). Learning on a chip - Hardware implementation of a neural network including a learning algorithm, 10th Zittau Fuzzy Colloquium, Wissenschaftliche Berichte, Heft 75-2002, S. 205 - 210.

Renner, J. & Protzel, P. (2001). Mobile Software-Agenten für den Fernzugriff auf Anlagen und Geräte. VDI Berichte 1608 zum GMA Kongress 2001: Automatisierungstechnik im Spannungsfeld neuer Technologien, Baden-Baden, S. 883-890.

Kindermann, L. & Protzel, P. (2001). Computing Iterative Roots with Second Order Training Methods. Proc. of the International Joint Conference on Neural Networks IJCNN 01, Washington, D.C., pp. 629-632.

Lewandowski, A. & Protzel, P. (2001). Approximation of Time-Varying Functions with Local Regression Models. Proceedings of the International Conference on Artificial Neural Networks ICANN 2001, Wien, Springer Lecture Notes in Computer Science 2130, pp. 237-243.

Lewandowski, A. & Protzel, P. (2001). Predicting Time-Varying Functions with Local Models. Proc. of the The Fourth International Symposium on Intelligent Data Analysis IDA 2001, Lisbon, Portugal. Advances in Intelligent Data Analysis, LNCS 2189, Springer, pp. 44- 52.

Kindermann, L., Lewandowski, A. & Protzel, P. (2001). A framework for Solving Functional Equations with Neural Networks. Proc. of the 8th International Conference on Neural Information Processing ICONIP '2001, Shanghai, China, pp. 1075-1078.

Tagscherer, M. (2001). Dynamische Neuronale Netzarchitektur für Kontinuierliches Lernen. Dissertation, TU Chemnitz. Online Veröffentlichung der Universitätsbibliothek der TU Chemnitz unter http://archiv.tu-chemnitz.de/pub/2001/0072/

Kindermann, L., Lewandowski, A. & Protzel, P. (2000). A Comparison of Different Neural Methods for Solving Iterative Roots. Proceedings at the Seventh Inter­national Conference on Neural Information Processing (ICONIP'2000), Taejon, Korea, pp. 565-569.

Protzel, P., Lewandowski, A., Kindermann, L., Tagscherer, M. & Herrnberger, B. (2000). Anwendung und Entwicklung Neuronaler Verfahren zur Autonomen Prozess-Steuerung. BMBF Abschlussbericht, Online Veröffentlichung der Universitätsbibliothek der TU Chemnitz unter http://archiv.tu-chemnitz.de/pub/2001/0080 /

Protzel, P., Tagscherer, M. & Fazliya, N. (2000). Stabilität und Plastizität Neuronaler Netze bei konti­nuierlichem Lernen. Fortschritt-Berichte VDI Nr. 643, VDI-Verlag, S. 164 ­173.

Protzel, P., Kindermann, L., Tagscherer, M. & Lewandowski, A. (2000). Abschätzung der Vertrauens­würdigkeit von Neuronalen Netzprognosen bei der Prozessoptimierung. VDI Bericht Nr. 1626, VDI Verlag, S. 335-339.

Tagscherer, M. & Protzel, P. (1999). Simultaneous learning of time-variant functions and data set distributions, Sixth International Workshop Fuzzy-Neuro Systems ­ FNS 1999, Leipzig, Germany, pp. 145-154.

Tagscherer, M. & Protzel, P. (1999). Kontinuierliches Lernen mit Neuronalen Netzen, 9. Workshop Fuzzy Control 99, Dortmund, Germany, pp. 108-121.

Lewandowski, A., Tagscherer, M., Kindermann, L., Protzel, P. (1999). Improving the Fit of Locally Weighted Regression Models, Proceedings of the Sixth International Conference on Neural Information Processing (ICONIP '99), Perth, Australia, pp. 371-374.

Tagscherer, M., Kindermann, L., Lewandowski, A. & Protzel, P. (1999): Overcome Neural Limitations for Real World Applications by Providing Confidence Values for Network Prediction, Proceedings of the Sixth International Conference on Neural Information Processing (ICONIP '99), Perth, Australia, pp. 520-525.

Kindermann, L., Lewandowski, A., Tagscherer, M. & Protzel, P. (1999). Computing Confidence Measures and Marking Unreliable Predictions by Estimating Input Data Densities with MLPs. Proceedings of the Sixth International Conference on Neural Information Processing (ICONIP'99), Perth, Australia, pp. 91-94.

Protzel, P., Kindermann, L., Tagscherer, M., Lewandowski, A. (1998). Adaptive Systemidentifikation mit Neuronalen Netzen zur Profilsteuerung in Walzwerken. Computational Intelligence: Neuronale Netze, Evolutionäre Algorithmen, Fuzzy Control im industriellen Einsatz, VDI Berichte 1381, VDI Verlag, Düsseldorf, pp. 347-359.

Tagscherer, M., Protzel P. (1998). Adaptive Input-Space Clustering for Continuous Learning Tasks. Proceedings in Artificial Intelligence - FNS '98, Munich, Germany, pp. 352-358.

Holve, R. & Protzel, P. (1997). Einparken eines Modellfahrzeugs mit Fuzzy Control. In A. Grauel, W. Becker u. F. Belli (Hrsg.), Proc. of Artificial Intelligence No. 5: Fuzzy-Neuro-Systeme '97 - Computational Intelligence, Infix Verlag, S. 419-426.

Bocklisch, S. F., Haass, U. L., Bitterlich, N. & Protzel, P. (Hrsg.) (1996). Fuzzy Technologien und Neuronale Netze in der Praxis. Tagungsband des 10. Chemnitzer Kolloquiums 29./30. November 1995, Shaker Verlag, Aachen.

Wallrafen, J., Protzel, P. & Popp, H. (1996). Genetically Optimized Neural Network Classifiers for Bankruptcy Prediction - An Empirical Study. Proc. of the 29th Annual Hawaii Int'l Conf. on System Sciences, pp. 419-426.

Mohraz, K. & Protzel, P. (1996). FlexNet - A Flexible Neural Network Construction Algorithm. Proc. of the European Symposium on Artificial Neural Networks - ESANN '96, Bruges, pp. 111-116.

Holve, R., Protzel, P. & Naab, K. (1996). Generating Fuzzy Rules for the Acceleration Control of an Adaptive Cruise Control System. Proc. of the 1996 Biennial Conference of the North American Fuzzy Processing Society - NAFIPS '96, Berkeley, California, pp. 451 - 455.

Holve, R. & Protzel, P. (1996). Reverse Parking of a Model Car with Fuzzy Control. Proceedings. of the 4th European Congress on Intelligent Techniques and Soft Computing - EUFIT-96, Aachen, pp. 2171-2175.

Martinetz, T., Gramckow, O., Protzel, P. & Sörgel, G. (1996). Neuronale Netze zur Steuerung von Walzstraßen. atp - Automatisierungstechnische Praxis, 38 Heft 10, S. 28-42.

Martinetz, T., Gramckow, O. & Protzel, P. (1995). Walzwerksteuerung mit Neuronalen Netzen. VDI Bericht 1184, Neuronale Netze - Anwendungen in der Auto­matisierungstechnik, VDI/VDE-GMA Tagung in Langen, S. 35-42.

Wallrafen, J., Protzel, P., Popp, H. & Baetge, J. (1995). Bankruptcy Prediction using Different Soft Computing Methods. Proc. of the 3rd European Congress on Intelligent Techniques and Soft Computing - EUFIT-95, Aachen, pp. 1710-1714.

Holve, R., Protzel, P., Bernasch, J. & Naab, K. (1995). Adaptive Fuzzy Control for Driver Assistance in Car Following. Proc. of the 3rd European Congress on Intelligent Techniques and Soft Computing - EUFIT-95, Aachen, pp. 1149-1153.

Popp, H., Protzel, P., Wallrafen, J. & Mertens, P. (1995). Soft-Computing Methoden für die Kreditwürdigkeitsprüfung. Operations Research Proceedings, Springer Verlag, S. 305-310.

Martinetz, T., Protzel, P., Gramckow, O. & Sörgel, G. (1994). Neural Network Control for Rolling Mills. Proc. 2nd European Congress on Intelligent Techniques and Soft Computing - EUFIT-94, Aachen, pp. 147-152.

Protzel, P., Palumbo, D. & Arras, M.(1993). Performance and Fault-Tolerance of Neural Networks for Optimization. IEEE Transactions on Neural Networks, Vol. 4, No. 4, pp 600-614.

Protzel, P., Holve, R., Bernasch, J. & Naab, K. (1993). Abstandsregelung von Fahrzeugen mit Fuzzy Control. In B. Reusch (Hrsg.), Fuzzy Logik - Theorie und Praxis, Reihe Informatik Aktuell, Springer Verlag, S. 212-222.

Protzel, P., Holve, R., Bernasch, J. & Naab, K. (1993). Fuzzy Distance Control for Intelligent Vehicle Guidance. Proceedings of the 12th Annual Meeting of the North American Fuzzy Processing Society - NAFIPS '93, Allentown, PA, pp. 87-91.

Arras, M. & Protzel, P. (1993). Assessing Generalization by 2-D Receptive Field Visualization. Proceedings of the International Conference on Artificial Neural Networks - ICANN '93.

Arras, M., Protzel, P. & Palumbo, D. (1992). Automatic Learning Rate Adjustment for Self-Supervising Autonomous Robot Control. In H. G. Schuster (Ed.), Applications of Neural Networks, VCH Verlagsgesellschaft, pp. 145-151; auch veröffentlicht als NASA Technical Memorandum TM-107592, NASA Langley Research Center.

Protzel, P. (1991). Associative Memory with High Order Feedback. In T. Kohonen, K. Maekisara, O. Simula, and J. Kangas (Eds.), Artificial Neural Networks, Vol. 1, Elsevier Science Publishing Company, Inc., pp. I-273-278.

Protzel, P. (1990). Comparative Performance Measure for Neural Networks Solving Optimization Problems, Proc. of the International Joint Conference on Neural Networks IJCNN-90, Washington D.C., pp. II-523-526.

Protzel, P. & Arras, M. (1990). Fault-Tolerance of Optimization Networks: Treating Faults as Additional Constraints, Proc. of the International Joint Conference on Neural Networks IJCNN-90, Washington D.C., pp. I-455-458.

Protzel, P. (1990). Artificial Neural Network for Real-Time Task Allocation in Fault-Tolerant, Distributed Processing System. In R. Eckmiller, G. Hartmann, and G. Hauske (Eds.), Parallel Processing in Neural Systems and Computers, Elsevier Science Publishing Company, Inc., pp. 307-310.

Jeffries, C. & Protzel, P. (1990). High Order Neural Models for Error Correcting Code. SPIE Proceedings Vol. 1294, Applications of Artificial Neural Networks, Orlando, Fl, pp. 510-517.

Protzel, P. (1988). Automatically Generated Acceptance Test: A Software Reliability Experiment. Proc. of the Second International Workshop on Software Testing, Verification, and Analysis, Banff, Alberta, Canada, IEEE Computer Society Press, pp. 196-203.