Springe zum Hauptinhalt
Professur Wissenschaftliches Rechnen
Wissenschaftliches Rechnen
Professur Wissenschaftliches Rechnen 

Dr. Max Winkler

Max Winkler

Telefon:
0371-531-+49 371 531 33097
Fax:
+49 371 531 22509
Raum:
Reichenhainer Str. 41, Zimmer 616

Short CV

Teaching

Current semester: Winter term 2023

Former semesters

Summer term 2023

Winter term 2022/23

Summer term 2022

Winter term 2021/2022

Summer term 2021

Winter term 2020/2021

  • Exercise for the lecture Introduction to Optimization

Summer term 2020

Temporary professorship at Leibniz-Universität Hannover
  • Mathematics II für life sciences and geology
  • Computeralgebra
  • Discontinuous Galerkin methods

Winter term 2019/2020

Summer term 2019

  • Lecture Numerical Methods for Partial Differential Equations (in english)

Winter term 2018/2019

  • Lecture Numerical Methods for Ordinary Differential Equations

Summer term 2018

Winter term 2017/18

Publications

Submitted articles

  1. Blechschmidt, J, Pietschmann, J.-F., Riemer, T.-C., Stoll, M., Winkler, M.: A comparison of PINN approaches for drift-diffusion equations on metric graphs
    Preprint arXiv:2205.07195, 2022

Journal articles

  1. Marino, G., Pietschmann, J., Winkler, M.:
    A free boundary model for transport induced neurite growth
    European Journal of Applied Mathematics, accepted for publication, 2024
    [Preprint arXiv:2302.00527]
  2. Pietschmann, J., Stötzner, A., Winkler, M.:
    Numerical investigation of agent controlled pedestrian dynamics using a structure preserving finite volume scheme
    Advances in Computational Mathematics 50(4), 2024
    [Article | Preprint arXiv:2301.02516 ]
    Program code available in GitHub
  3. Herzog, R., Pietschmann, J., Winkler, M.:
    Optimal Control of Hughes' Model for Pedestrian Flow via Local Attraction
    Applied Mathematics & Optimization 88(87), 2023
    [Article | Preprint arXiv:2011.03580]
  4. Pfefferer, J., Winkler, M.:
    Finite element approximations for PDEs with irregular Dirichlet boundary data on boundary concentrated meshes
    Computational Methods in Applied Mathematics 23(4), 2022
    [Article ]
  5. Stoll, M., Winkler, M.:
    Optimization of a partial differential equation on a complex network
    Electronic Transactions on Numerical Analysis 54:392-419, 2021
    [ Article | Preprint arXiv:1907.07806]
  6. Blechschmidt J, Herzog, R., Winkler, M.:
    Error estimation for second-order PDEs in non-variational form
    Numerical Methods for Partial Differential Equations 37(3):2190-2221, 2021
    [Article | Preprint arXiv:1909.12676]
  7. Winkler, M.:
    Error estimates for the finite element approximation of bilinear boundary control problems
    Computational Optimization and Applications 76(1):155-199, 2020
    [ Preprint arXiv:1901.03612 ]
  8. Winkler, M.:
    Error estimates for variational normal derivatives and Dirichlet control problems with energy regularization
    Numerische Mathematik 144:413–445, 2020
    [ Preprint arXiv:1808.01171 ]
  9. Apel, T., Pfefferer, J., Rogovs, S., Winkler, M.:
    Maximum norm error estimates for Neumann boundary value problems on graded meshes
    IMA J. Numer. Anal. 40(1):474–497, 2020
    [ Preprint arXiv:1804.10904 ]
  10. Pfefferer, J., Winkler, M.:
    Finite element error estimates for normal derivatives on boundary concentrated meshes
    SIAM J. Numer. Anal. 57(5):2043-2073, 2019
    [ Preprint arXiv:1804.05723 ]
  11. Apel, T., Pfefferer, J., Winkler, M.:
    Error Estimates for the postprocessing approach applied to Neumann boundary control problems in polyhedral domains,
    IMA J. Numer. Anal.,38(4): 1984–2025, 2018. [ Preprint ]
  12. Apel, T., Steinbach, O., Winkler, M.:
    Error Estimates for Neumann Boundary Control Problems with Energy Regularization,
    J. Numer. Math. 24(4):207-233, 2016. [ Preprint ]
  13. Apel, T., Pfefferer, J., Winkler, M.:
    Local Mesh Refinement for the Discretization of Neumann Boundary Control Problems on Polyhedra,
    Math. Methods Appl. Sci. 39(5):1206-1232, 2015. [ Preprint ]
  14. Apel, T., Lombardi, A. L., Winkler, M.:
    Anisotropic mesh refinement in polyhedral domains: error estimates with data in L2(Ω),
    ESAIM. Math. Model. Numer. Anal. 48(4): 1117-1145, 2014. [ Preprint ]
  15. Grossmann, C., Winkler, M.:
    Mesh-Independent Convergence of Penalty Methods Applied to Optimal Control with Partial Differential Equations,
    Optimization 62(5): 629-647, 2013. [ Preprint ]
  16. Grossmann, C., Winkler, M.:
    A Mesh-Independence Principle for Quadratic Penalties Applied to Semilinear Elliptic Boundary Control,
    Schedae Informaticae 21: 9-26, 2012. [ Preprint ]

Theses

  1. Diploma thesis: Strafmethoden für steuerbeschränkte Kontrollprobleme, TU Dresden, 2011.
  2. PhD thesis: Finite element error analysis for Neumann boundary control problems on polyhedral domains, UniBw München, 2015.