Springe zum Hauptinhalt
Professur Montage- und Handhabungstechnik
Professur Montage- und Handhabungstechnik
Professur Montage- und Handhabungstechnik 

Kinematische Kette

Die kinematische Kette zeigt den strukturellen Zusammenhang der Getriebeglieder ohne Hinweis auf deren Funktion. Sie enthält eine Menge von n Gliedern, g1 Dreh- und Schubgelenken und g2 Kurven- und Zahnradgelenke und besitzt einen Freiheitsgrad F1. Des Weiteren muss für jede Teilmenge n<n von Gliedern mit g1 und g2 Gelenken zwischen diesen Gliedern die Bedingung 3(n1)2g1g21 erfüllt sein.

Erweitert man eine kinematische Kette mit einem Freiheitgrad F=1 um zwei gelenkig miteinander verbundene Glieder (Zweischlag), bleibt das Getriebe zwangläufig und der Freiheitsgrad unverändert. Wird ein Glied der kinematischen Kette zum Gestell und ein oder mehrere Glieder als Antriebsglied festgelegt, entsteht aus der kinematischen Kette ein Getriebe.

Kinematische Kette

Drehgelenkketten mit F=1

Aus der Zwanglaufgleichung leitet sich das sogenannte Zwanglaufkriterium für ebene Getriebe ab: 3(n1)2g1g2F=0

Für ebene Getriebe mit einem Freiheitsgrad F=1 und g2=0 gilt dann das Grübler'sche Zwanglaufkriterium: 3n2g4=0

Durch Umformung kann die Anzahl der vorhanden Gelenke g aus der Anzahl der Glieder ermittelt werden.
(g ist dann ganzzahlig, wenn n eine gerade Zahl ist) g=3/2n2

Die Anzahl k der an einem Getriebeglied möglichen Gelenkelemente ergibt sich zu: kn/2 Außerdem kann die Anzahl der in einer kinematischen Kette vorkommenden Zwei- und Dreigelenkgliedern aus der Anzahl der Gliedern mit k Gelenken nach folgenden Gleichungen ermittelt werden: n2=4+n4+2n5+...+(k3)nk n3=n(n2+n4+n5+...+nk)

Aus den oben genannten Beziehungen kann die Anzahl der möglichen Drehgelenkketten und Getriebetypen für eine vorgegebene Anzahl an Gliedern bestimmt werden.

Anzahl der Glieder Anzahl der Drehgelenkketten mit F=1 Anzahl der Getriebe mit Drehgelenken und einem definierten Antrieb im Gestell
4 1 1
6 2 9
8 16 153
10 230 4506

Für ebene kinematische Ketten mit einem Freiheitgrad F=1 und sechs Gelenken existieren zwei mögliche kinematische Ketten, die nach den englischen Ingenieuren Watt und Stephenson benannt sind.

Wattsche Kette

Wattsche Kette (benachbartes Dreigelenkglied)

Stephensonsche Kette

Stephensonsche Kette (ohne benachbartes Dreigelenkglied)



Regeln für das Aufstellen kinematischer Ketten

  1. Anzahl der Gelenke: g=n/22 (für F=1 und n4 ist n geradzahlig)
  2. Anzahl der möglichen Gelenke je Glied: k1
  3. kein Gliedpolygon mit nur 3 Gelenken (Ausnahme Kurvengetriebe)
  4. Zweischläge können beliebig hinzugefügt oder weggenommen werden, der Freiheitsgrad wird davon nicht beeinflusst
  5. Für n8 existieren Ketten ohne Zweischläge (Ketten nicht einfachen Aufbaus)