Springe zum Hauptinhalt
Professur Montage- und Handhabungstechnik
Professur Montage- und Handhabungstechnik
Professur Montage- und Handhabungstechnik 

Grundprobleme der Lagensynthese

Gegeben ist eine Ebene E, die in mehreren Lagen E1, E2,E3, … in einer Bezugsebene E0 liegt.
Gesucht ist ein Punkt X (oder mehrere solcher Punkte) der Ebene E, der in seinen Lagen X1, X2, X3, … in E0 jeweils den gleichen Abstand von einem Punkt X0 in der Bezugsebene E0 hat und damit auf einem Kreis in E0 liegt.

Die Lage einer bewegten Ebene E gegenüber der ruhenden Bezugsebene E0 lässt sich in einfacher Weise durch zwei Punkte der Ebene E (z. B. A und B)
oder

durch einen Punkt (z. B. C) und den dazugehörigen Lagewinkel β beschreiben. Als Bezugsachse der Winkelmessung dient die x-Achse des in der Bezugsebene E0 angeordneten Koordinatensystems x, y (GAUSSsche Zahlenebene).

Umgekehrt kann ein Punkt X0 in der Bezugsebene E0 als Mittelpunkt eines Kreises gesucht sein, auf dem ein Punkt X einer in den Lagen E1, E2, E3, … in E0 gegebenen Ebene E in seinen Lagen X1, X2,X3, … liegt. Der Punkt X wird Kreispunkt, der Punkt X0 wird Mittelpunkt genannt. Beides sind konjugierte (einander zugeordnete) Punkte.

Die Lagen X1, X2, X3, … des Punktes X werden homologe (entsprechende) Punkte genannt.

Der Aufwand für die Konstruktion von Kreis- und Mittelpunkten wird um so größer, je mehr Lagen der Ebene E in der Bezugebene E0 vorgegeben werden. Außerdem wird dadurch die Anzahl der frei wählbaren Parameter sowie die Anzahl möglicher Lösungen eingeschränkt.

Von Burmester wurde bewiesen, dass es theoretisch für das Grundproblem der Lagensynthese nur bis zu 5 Lagen der Ebene E reele Lösungen gibt.

Für praktische Aufgabenstellungen wird empfohlen, möglichst nur 3 oder 4 Lagen – oder bei mehr Lagen spezielle (z. B. symmetrische) Anordnungen – zu verwenden.

 

Weiterhin ist bekannt, dass es für die Lagensynthese eines Viergelenkgetriebes für N vorgegebene Einzellagen ohne Antriebswinkelzuordnung 3N Gleichungen (Bedingungen) und (N+10) Unbekannte (Parameter) gibt.

Die frei wählbaren Parameter (WP) sind somit von der Anzahl der zu erfüllenden Einzellagen abhängig und bestimmen die konstruktiven Gestaltungsmöglichkeiten, welche sich aus der Charakteristik der Kreis- und Mittelpunkte ergeben.

Anzahl der Lagen von E Charakteristik der Kreis- und Mittelpunkte 3N N+10 WP
2,3 jeder Punkt von E bzw. E0 kann als Kreispunkt X0 gewählt werden 6,9 12,13 6,4
4 X liegt auf Kreispunktkurve k in E, X0 liegt auf Mittelpunktkurve m in E0 12 14 2
5 X bzw. X0 ist einer der 4 Burmesterschen Punkte in E bzw. E0 15 15 0
>5 i.a. keine Lösung      
Grundproblem: 3 Lagen einer Ebene E in einer Bezugebene E0