Dr. Jens Lang
Address
Technische Universität Chemnitz
Department of Computer Science
Str. der Nationen 62
09111 Chemnitz
Technische Universität Chemnitz
Department of Computer Science
Str. der Nationen 62
09111 Chemnitz
Contact
Consultation hour
Tuesday 13:30–14:30 (during the lecture period)Publications
-
Jakobs, T.; Lang, J.; Rünger, G.; Stöcker, P.: Tuning linear algebra for energy efficiency on multicore machines by adapting the ATLAS library. In: Future Generation Computer Systems, vol. 82: pp. 555-564. Elsevier – ISSN 0167-739X, 2017 (published May 2018). DOI: 10.1016/j.future.2017.03.009 Online resource available
-
Lang, J.: Data-aware tuning of scientific applications with model-based autotuning. In: Concurrency and Computation: Practice and Experience, vol. 29, no. 4: pp. 1-15. John Wiley and Sons, Ltd – ISSN 1532-0634, 2017. DOI: 10.1002/cpe.3885 Online resource available
-
Lang, J.: Energie- und Ausführungszeitmodelle zur effizienten Ausführung wissenschaftlicher Simulationen, TU Chemnitz, Fakultät für Informatik, Doctoral thesis, 2015. Online resource available
-
Lang, J.; Rünger, G.; Stöcker, P.: Towards energy-efficient linear algebra with an ATLAS library tuned for energy consumption. In: 2015 International Conference on High Performance Computing & Simulation (HPCS 2015): pp. 63-70. IEEE, 2015. DOI: 10.1109/HPCSim.2015.7237022 Online resource available
-
Lang, J.: Grüner verschlüsseln – Messung des Energieverbrauchs von Verschlüsselungsalgorithmen. In: Team der Chemnitzer Linux-Tage, (Eds.): Chemnitzer Linux-Tage 2014 – Tagungsband: pp. 25–32. Universitätsverlag Chemnitz – ISBN 978-3-944640-08-2. Chemnitz, 2014. Online resource available
-
Lang, J.; Rünger, G.: An execution time and energy model for an energy-aware execution of a conjugate gradient method with CPU/GPU collaboration. In: Journal of Parallel and Distributed Computing, vol. 74, no. 9: pp. 2884-2897. Elsevier – ISSN 0743-7315, 2014. DOI: 10.1016/j.jpdc.2014.06.001 Online resource available
-
Lang, J.; Rünger, G.: Measuring and modelling energy consumption for a CPU/GPU conjugate gradient method in an adaptive FEM. In: Proc. of the High-Level Programming for Heterogeneous and Hierarchical Parallel Systems workshop at HiPEAC conference 2014. Wien, Österreich, 2014.
-
Lang, J.; Rünger, G.; Stöcker, P.: Simulation Coupling for Simulink Models with the Functional Mock-up Interface. In: 3rd International Colloquium of the Cluster of Excellence eniPROD 2014. Posterbeitrag. Chemnitz, Deutschland, 2014.
-
Balg, M.; Lang, J.; Meyer, A.; Rünger, G.: Array-based reduction operations for a parallel adaptive FEM. In: Keller, R.; Kramer, D.; Weiß, J.-P. (Eds.): Facing the Multicore Challenge Ⅲ (LNCS, vol. 7686): pp. 25-36. Springer – ISBN 978-3-642-35892-0, 2013. DOI: 10.1007/978-3-642-35893-7_3 Online resource available
-
Lang, J.; Rünger, G.: High-Resolution Power Profiling of GPU Functions Using Low-Resolution Measurement. In: Wolf, F.; Mohr, B.; an Mey, D. (Eds.): Euro-Par 2013 Parallel Processing (LNCS, vol. 8097): pp. 801–812. Springer – ISBN 978-3-642-40046-9, 2013. DOI: 10.1007/978-3-642-40047-6_80 Online resource available
-
Lang, J.; Rünger, G.: Dynamic distribution of workload between CPU and GPU for a parallel conjugate gradient method in an adaptive FEM. In: Procedia Computer Science, vol. 18: pp. 299-308. Elsevier. International Conference on Computational Science (ICCS 2013), 2013. DOI: 10.1016/j.procs.2013.05.193 Online resource available
-
Lang, J.; Rünger, G.; Stöcker, P.: Dynamische Simulationskopplung von Simulink-Modellen durch einen Functional-Mock-up-Interface-Exportfilter / TU Chemnitz. (Chemnitzer Informatik-Berichte CSR-13-05) – ISSN 0947-5125, 2013. Online resource available
-
Dachsel, H.; Hofmann, M.; Lang, J.; Rünger, G.: Automatic Tuning of the Fast Multipole Method Based on Integrated Performance Prediction. In: Proceedings of the 14th IEEE International Conference on High Performance Computing and Communications (HPCC-2012): pp. 617-624. IEEE – ISBN 978-1-4673-2164-8. Liverpool, United Kingdom, Juni 2012. DOI: 10.1109/HPCC.2012.88 Online resource available
-
Lang, J.: MapReduce – Parallelität im Großen und im Kleinen. In: Team der Chemnitzer Linux-Tage, (Eds.): Chemnitzer Linux-Tage 2012 – Tagungsband: pp. 69-76. Universitätsverlag Chemnitz – ISBN 978-3-941003-52-1. Chemnitz, 2012. Online resource available
-
Hoffmann, K. H.; Hofmann, M.; Lang, J.; Rünger, G.; Seeger, S.: Accelerating Physical Simulations Using Graphics Processing Units. In: it - Information Technology, vol. 53, no. 2: pp. 49-59. Oldenbourg Wissenschaftsverlag GmbH – ISSN 1611-2776, 2011. DOI: 10.1524/itit.2011.0625 Online resource available
-
Hoffmann, K. H.; Hofmann, M.; Lang, J.; Rünger, G.; Seeger, S.: Simulating Anomalous Diffusion on Graphics Processing Units. In: Proceedings of the 11th IEEE International Workshop on Parallel and Distributed Scientific and Engineering Computing (PDSEC-10): pp. 1-8. IEEE – ISBN 978-1-4244-6534-7. Atlanta, USA, April 2010. DOI: 10.1109/IPDPSW.2010.5470767 Online resource available
Theses
- Student research thesis: Performanzanalyse paralleler Algorithmen auf NUMA-Architekturen (Performance analysis of parallel algorithms on NUMA architectures)
Department of Computer Science, TU Chemnitz, 2008. - Diploma thesis: Verwendung von Grafikprozessoren zur Simulation von Diffusionsprozessen mit zufälligen Sierpiński-Teppichen (Application of graphics processing units for simulation of diffusion processes with random Sierpiński carpets)
Department of Computer Science, TU Chemnitz, 2008. (available online) - Doctoral thesis: Energie- und Ausführungszeitmodelle zur effizienten Ausführung wissenschaftlicher Simulationen (Energy and execution time models for an efficient execution of scientific simulations)
Department of Computer Science, TU Chemnitz, 2014. (available online)
- Source code to the article »High-Resolution Power Profiling of GPU Functions Using Low-Resolution Measurement«: tesla-power-profile.cpp (to be compiled with gcc using the flag -std=c++11)
-
Sierpiński carpet (useful for simulating anomalous diffusion):