Jump to main content
DFG Research Unit 1154 "Towards Molecular Spintronics"
Projects
DFG Research Unit 1154 "Towards Molecular Spintronics" 

DFG Research Unit 1154 „Towards Molecular Spintronics“

Projects:

Project Partners Institution
SP1
  • Part I: Thin films of redox-active high-spin molecules
  • Part II: Monolayers of redox-active high-spin molecules on conducting and ferromagnetic metals: Control of selfassembly and integration into devices
Kersting UL
SP2
  • Part I:Preparation of spin coated thin films and self-assembled monolayers of magnetic transition metal complexes
  • Part II: From the preparation of monomolecular layers to thin films of magnetic transition metal complexes towards their integration into spintronic devices
Rüffer, Lang TUC
SP3
  • Part I + II: Electronic structure, transport, and collective effects in molecular layered systems
Kortus,
Timm
TUF,
TUD
SP4
  • Part I + II: Electron spin resonance and magnetic studies
Kataev,
Klingeler,
Büchner
IFW,
UH
IFW/TUD
SP5
  • Part I: Spin dynamics in single molecules and thin films studied by nuclear probe spectroscopy
Klauss TUD
SP6
  • Part I + II: Scanning tunneling microscopy and spectroscopy of magnetic molecules
Hess,
Hietschold
IFW,
TUC
SP7
  • Part I: Spectroscopic studies of magnetic molecular materials
  • Part II: Spectroscopic studies of magnetic molecular materials and their interfaces
Knupfer,
Zahn
IFW,
TUC
SP8
  • Part I + II:From the preparation of molecular layers and their (magneto-)optical investigation towards laterally stacked devices
Salvan, Zahn, Hiller TUC
SP9
  • Part I: Transport through spin polarized semiconductor/molecule/semiconductor tunnel junctions
  • Part II: Vertical magneto-resistive devices made from hybrid metal/molecules/metal multi-layer systems
Schmidt,
Hess
IFW/TUC
IFW

 

SP1. | SP2. | SP3. | SP4. | SP5. | SP6. | SP7. | SP8. | SP9. | [close]

SP1: Thin films of redox-active high-spin molecules

Single molecule magnets (SMMs) are currently considered for applications in spin electronics and information storage devices. In order to use such molecules in devices, it is essential to deposit and arrange SMMs on substrates for addressing purposes. In the present project novel high-spin molecules will be synthesized and the conditions under which they can be deposited onto surfaces without decomposition will be elucidated experimentally. Particular emphasis of the project will be put on: the targeted assembly of novel non-oxide based single molecule magnets using a modular approach, their deposition and arrangement on metallic (Au(111), Co), insulating (SiO2), and semiconducting surfaces (Si, GaAs), and film characterization by various techniques such as SQUID magnetometry, near-field techniques (AFM, STM), variable angle spectroscopic ellipsometry, high-field ESR, IR, Raman and magneto-optical Kerr effect (MOKE) spectroscopy.