Springe zum Hauptinhalt
Pressestelle und Crossmedia-Redaktion
TUCaktuell
Pressestelle und Crossmedia-Redaktion 
TUCaktuell Forschung

Kräfte in Kunststoffen optisch messen

Faszinierende „molekulare Federn“: Forschungsteam der TU Chemnitz entwickelt Farbstoffe, die Spannungen in Kunststoffen quantitativ anzeigen

  • Ein bärtiger Mann arbeitet im Labor an einer Maschine.
    Raphael Hertel, Wissenschaftlicher Mitarbeiter der Professur Polymerchemie, führt eine Zug-Dehnungs-Messung an einer Probe im Labor durch. Foto: Jacob Müller
  • Leuchtender Stab in einem Arbeitsraum einer Maschine.
    In Abhängigkeit von der Kraft ändert.sich die Farbe der Probe. Verantwortlich dafür sind Farbstoffmoleküle aus dem Bereich sogenannter Mechanophore, die sich ändernde Bauteilspannungen durch Farbänderungen sichtbar machen. Foto: Jacob Müller

Unter der Leitung von Prof. Dr. Michael Sommer, Inhaber der Professur Polymerchemie der Technischen Universität Chemnitz, ist es einem Forschungsteam gelungen, verschiedene Farbstoffmoleküle aus dem Bereich sogenannter Mechanophore zu konstruieren und so einzusetzen, dass sie molekulare Spannungen quantitativ anzeigen. Mit Hilfe solcher Moleküle werden Bauteilspannungen je nach Stärke durch Farbänderungen sichtbar.

Das Konzept solcher Farbstoffe ist nicht neu. Bisherige Mechanophore konnten jedoch meist nur das Vorhandensein oder Fehlen von Spannungen in Kunststoffen anzeigen. In der Professur Polymerchemie werden jedoch seit einigen Jahren molekulare Torsionsfedern entwickelt, die sich als besonders geeignete und vielversprechende Klasse von Mechanophoren erweisen. Die Farbstoffmoleküle „fühlen“ die Kraft, die innerhalb eines Kunststoffs wirkt, und zeigen mechanische Belastung durch einen Farbumschlag an. Nimmt die Kraft auf den Kunststoff ab, kehren die Farbstoffmoleküle wieder in ihren Ausgangszustand zurück. Daher werden diese Farbstoffe auch als „molekulare Federn“ bezeichnet – sie dehnen sich und „springen“ danach wieder in ihren ursprünglichen Zustand.

In einer früheren Arbeit an der Professur Polymerchemie konnten damit bereits mechanische Spannungen in Kunststoffen stufenlos sichtbar gemacht und molekulare Kräfte aus der Theorie abgeleitet werden. „Das bringt überall dort große Vorteile, wo es darauf ankommt, Belastungen in Kunststoffen in Echtzeit abzubilden. Diese neue Form der Schadensanalyse könnte schon bald zu praktischen Anwendungen führen“, sagt Sommer.

Kalibrierung molekularer Torsionsfedern ermöglicht quantitative Kraftmessung

In der aktuellen Forschungsarbeit, die in der Zeitschrift Angewandte Chemie publiziert wurde, wird dieses Konzept durch eine experimentelle Kalibrierung von Kräften weiterentwickelt. Somit kann die Größe von Kräften in verschiedenen Kunststoffen optisch bestimmt werden. „Der Schritt von der bloßen Sichtbarmachung und theoretisch berechneten Kräften in Kunststoffen hin zu experimentell direkt bestimmten Kräften ist ein großer“, versichert Sommer. Möglich wurde dies durch die Verwendung unterschiedlich funktionierender Mechanophore, deren Verhalten bei bestimmten mechanischen Spannungen untereinander abgeglichen werden kann. So konnten molekular-wirkende Kräfte ermittelt werden. Bislang wurden vor allem Zugkräfte untersucht. Inwieweit beispielsweise auch äußere Druckkräfte zuverlässig und quantitativ bestimmt werden können, muss noch erforscht werden.

Bessere mechanische Eigenschaften, Alterung von Kunststoffen und Schadensanalyse

Die Ergebnisse bilden eine breite Basis für ein noch besseres grundlegendes Verständnis von Kräften in polymeren Materialien. In weiteren Experimenten, die im Rahmen eines kürzlich geförderten DFG-Projekts gemeinsam mit den Arbeitsgruppen von Prof. Günter Reiter (Polymerphysik) und Priv.-Doz. Michael Walter (Theorie) der Albert-Ludwigs-Universität Freiburg durchgeführt werden, sollen mikroskopische Kräfteverteilungen in verschiedenen Kunststoffen untersucht werden und auch 3D-gedruckte Bauteile zum Einsatz kommen. „Die Visualisierung von zeit- und ortsaufgelösten Kräfteverteilungen kann bisher nur theoretisch modelliert werden. Der Einsatz von Torsionsfedern bietet hier einzigartige Möglichkeiten für mikroskopische Einblicke, die Alterungs- und Schadensanalyse revolutionieren könnten“, so Sommer.

Besonders freut er sich über den sehr hohen wissenschaftlichen Eigenanteil des Erstautors Raphael Hertel, der als Doktorand in der Professur Polymerchemie große Teile der Arbeit konzipiert und experimentell durchgeführt hat. „Es ist immer wieder eine große Freude zu sehen, wie jemand aus der Arbeitsgruppe so erfolgreich Projekte eigenständig bearbeitet“, sagt Sommer.  

Veröffentlichung:  Raphael Hertel, Maximilian Raisch, Michael Walter, Günter Reiter, Michael Sommer: Mechanistically Different Mechanochromophores Enable Calibration and Validation of Molecular Forces in Glassy Polymers and Elastomeric Networks, Angewandte Chemie International Edition, e202409369

DOI: https://doi.org/10.1002/anie.202409369

Weitere Informationen erteilen Prof. Dr. Michael Sommer, Telefon +49 (0)371/531-21230, E-Mail michael.sommer@chemie.tu-chemnitz.de, und Raphael Hertel, Telefon +49 (0)371/531-35678, E-Mail raphael.hertel@chemie.tu-chemnitz.de.

Mario Steinebach
05.11.2024

Mehr Artikel zu:

Alle „TUCaktuell“-Meldungen
Hinweis: Die TU Chemnitz ist in vielen Medien präsent. Einen Eindruck, wie diese über die Universität berichten, gibt der Medienspiegel.