Scientific interests
- Operator Theory
- Spectral Theory
- Differential Operators
- Mathematical Physics
Publications
Articles in refereed journals:
- The abstract Birman–Schwinger principle and spectral stability,
joint with D. Krejcirik,
Journal d'Analyse Mathématique, 148 (2022) 361-398. arXiv-Preprint: 2010.15102. - Bounds on the first Betti number - an approach via Schatten norm estimates on semigroup differences,
joint with C. Rose and P. Stollmann,
The Journal of Geometric Analysis, 32(115) (2022). arXiv-Preprint: 1810.12205. - Lp-spectrum and Lieb-Thirring inequalities for Schrödinger operators on the hyperbolic plane,
Annales Henri Poincaré, 20(7) (2019) 2447-2479. arXiv-Preprint: 1810.00733. - Eigenvalues of compactly perturbed operators via entropy numbers,
J. Spectr. Theory, 10(1) (2020) 251-269. arXiv-Preprint: 1710.01633. - Some remarks on upper bounds for Weierstrass primary factors and their application in spectral theory,
Complex Anal. Oper. Theory, 11(6) (2017) 1467–1476. arXiv-Preprint: 1704.01810. - Perturbation determinants in Banach spaces - with an application to eigenvalue estimates for perturbed operators,
Math. Nachr., 289(13) (2016) 1606-1625. arXiv-Preprint: 1507.06816. - Estimating the number of eigenvalues of linear operators on Banach spaces,
joint with M. Demuth, F. Hanauska and G.Katriel,
J. Funct. Anal., 268 (2015) 1032-1052. arXiv-Preprint: 1409.8569. - An observation concerning boundary points of the numerical range,
Oper. Matrices, 9(3) (2015) 545-548. arXiv-Preprint: 1409.4558. - On non-round points of the boundary of the numerical range and an application to non-selfadjoint Schrödinger operators,
J. Spectr. Theory, 5(4) (2015) 731–750. arXiv-Preprint: 1404.3960. - Lieb–Thirring Type Inequalities for Schrödinger Operators with a Complex-Valued Potential,
joint with M. Demuth and G.Katriel,
Int. Eq. Op. Theory, 75(1) (2013) 1-5, Open Problems. - Eigenvalues of non-selfadjoint operators: a comparison of two approaches,
joint with M. Demuth and G. Katriel,
Operator Theory: Advances and Applications, Vol. 232, 107-163. arXiv-Preprint: 1209.0266. - Variation of discrete spectra for non-selfadjoint perturbations of selfadjoint operators,
Int. Eq. Op. Theory, 76(1) (2013) 163-178. arXiv-Preprint: 1202.1118. - Absence of eigenvalues of non-selfadjoint Schrödinger operators on the boundary of their numerical range,
Proc. Amer. Math. Soc., 142 (2014), 1321-1335. arXiv-Preprint: 1108.1279. - From spectral theory to bounds on zeros of holomorphic functions,
joint with G. Katriel,
Bull. Lond. Math. Soc., 45(1) (2013) 103-110. arXiv-Preprint: 1103.1487. - An eigenvalue estimate and its application to non-selfadjoint Jacobi and Schrödinger operators,
Lett. Math. Phys., 98(1) (2011) 79-95. arXiv-Preprint: 1006.5308. - Inequalities for the eigenvalues of non-selfadjoint Jacobi operators,
joint with G. Katriel,
Complex Anal. Oper. Theory, 5(1) (2011) 197-218. arXiv-Preprint: 0901.1725. - On the discrete spectrum of non-selfadjoint operators,
joint with M. Demuth and G.Katriel,
J. Funct. Anal., 257 (2009) 2742-2759. arXiv-Preprint: 0908.2188. - On spectral stability for the fractional Laplacian perturbed by unbounded obstacles,
joint with M. Demuth,
Math. Nachr., 282(9) (2009) 1265-1277. - Estimating eigenvalue moments via Schatten norm bounds on semigroup differences,
Math. Phys. Anal. Geom., 10(3) (2007) 261-270.
Proceedings:
- On the role of the comparison function in the spectral theory of selfadjoint operators,
joint with M. Demuth,
Commun. Math. Anal., Conf. 03 (2011) 77-87, Proceedings of the conference "Analysis, Mathematical Physics and Applications" in Ixtapa, Mexico, March 1-5, 2010.
Mathematical reports:
- On the distribution of eigenvalues of non-selfadjoint operators,
joint with M. Demuth and G. Katriel,
TU Clausthal Mathematik Bericht 01/08. arXiv-Preprint: 0802.2468.
Theses:
- Schrödinger-Operatoren mit großen Kopplungen – exakte Konvergenzraten,
Diplomarbeit, TU Clausthal 2005. - On the discrete spectrum of linear operators in Hilbert spaces,
Dissertation, TU Clausthal 2010. Elektronische Version - Eigenvalues of compactly perturbed linear operators,
Habilitation, TU Chemnitz 2018. Elektronische Version