Springe zum Hauptinhalt
Fakultät für Mathematik
Fakultät für Mathematik
Fakultät für Mathematik 
Denis Borisov, Ivan Veselić: Low lying eigenvalues of randomly curved quantum waveguides

Denis Borisov, Ivan Veselić: Low lying eigenvalues of randomly curved quantum waveguides


Author(s):
Denis Borisov
Ivan Veselić
Title:
Denis Borisov, Ivan Veselić: Low lying eigenvalues of randomly curved quantum waveguides
Electronic source:
application/pdf
Preprint series:
Technische Universität Chemnitz, Fakultät für Mathematik (Germany). Preprint 11, 2013
Mathematics Subject Classification:
35P15 []
35C20 []
60H25 []
82B44 []
Abstract:
We consider the negative Dirichlet Laplacian on an infinite waveguide embedded in ℝ2, and finite segments thereof. The waveguide is a perturbation of a periodic strip in terms of a sequence of independent identically distributed random variables which influence the curvature. We derive explicit lower bounds on the first eigenvalue of finite segments of the randomly curved waveguide in the small coupling (i.e. weak disorder) regime. This allows us to estimate the probability of low lying eigenvalues, a tool which is relevant in the context of Anderson localization for random Schrödinger operators.
Keywords:

Language:
English
Publication time:
06/2013