Sommerschule "Variationelle Integratoren"
„Variational methods turn out to be not only esthetically and logically most satisfactory, but at the same time very practical by providing a tool for the solution of many dynamical problems.“ (C. Lanczos)
Inhalt:
- 1) Grundlagen der Variationsrechnung
- 2) Variationelle Integratoren
- 2.1) diskrete mechanische Systeme
- 2.2) diskrete thermomechanisch gekoppelte Systeme
- 2.3) diskrete Systeme mit holonomen Zwangsbedingungen
Termine und Raum:
Mo. 9:00-12:00 w263, 14:00-17:00 w263, w247
Di. 9:00-12:00 w263, 14:00-17:00 w263, w247
Mi. 9:00-12:00 w263, 14:00-15:00 w263, 15:00-17:00 Beachvolleyballfeld auf dem Campus-Sportplatz (Sportsachen mitbringen)
Literatur
- V.I. Arnold: Mathematical Methods of Classical Mechanics, Chapter 3
- A. Lew et al.: Variational Time Integrators
- D. Kern et al.: Variational Integrators for Thermomechanical Coupled Dynamic Systems with Heat Conduction