vom Scheidt, J.; Starkloff, H.-J.; Wunderlich, R. : Optimal low-dimensional approximations of random vector functions
- Author(s) :
- vom Scheidt, J.; Starkloff, H.-J.; Wunderlich, R.
- Title :
- Optimal low-dimensional approximations of random vector functions
- Electronic source :
- [gzipped dvi-file] 42
kB
[gzipped ps-file] 75 kB
- Preprint series
- Technische Universität Chemnitz, Fakultät für Mathematik (Germany). Preprint 98-31, 1998
- Mathematics Subject Classification :
- 60G12 [ General second order processes
]
- 41A63 [ Multidimensional approximation problems ]
- 41A63 [ Multidimensional approximation problems ]
- Abstract :
- The paper considers approximations of first-
and second-order moments of random functions
with values in a high-dimensional Euclidean
space using projections onto suitable
low-dimensional linear submanifolds. To
quantify the goodness of the approximation a
criterion based on the mean squared Euclidean
distance is introduced. In case of
wide-sense stationary random functions optimal
low-dimensional linear submanifolds are given
in terms of the mean
vector and eigenvectors of the variance matrix.
- Keywords :
- random vector process, low-dimensional approximation, optimal projection
- Language :
- english
- Publication time :
- 12/1998