Springe zum Hauptinhalt
Fakultät für Mathematik
Forschung
Fakultät für Mathematik 

Working Papers

  • C. Bombach, M. Tautenhahn: Logvinenko-Sereda Theorem for vector valued functions and application to control theory, in preparation.
  • C. Bombach: Unique Determination of a singular potential from boundary data.

Publikationen

  • C. Bombach, F. Gabel, C. Seifert, M.Tautenhahn: Observability for non-autonomous systems. SIAM Journal on Control and Optimization, 61(1), 313-339, 2023.
  • C. Bombach, D. Gallaun, C. Seifert, M.Tautenhahn: Observability and null-controllability for parabolic equations in Lp-spaces. Mathematical Control and Related Fields, 2022.

Vorträge

  • 14/12/21 Observability estimates for parabolic equations on endpoint Lebesgue spaces, (Oberseminar Analysis, Mathematische Physik & Dynamische Systeme) TU Dortmund
  • 17/09/20 Observability estimates for non-autonomous evolution equations, (DMV-Jahrestagung, TU Chemnitz)
  • 26/05/19 Unique determination of a rough potential from boundary data (n-Städte-Seminar, TU Freiberg)
  • 31/07/17 Uniqueness for an inverse boundary value problem with Kato potentials (Analysis on Graphs and Manifolds, TU Wien)
  • 05/08/17 On a mathematical problem in Electrical Impedance Tomography (PhD Seminar, Universität Jena)
  • 19/12/16 Low regularity results for the inverse conductivity problem (Operator Theory and Indefinite Inner Product Spaces, TU Wien)
  • 23/09/16 Das Calderón-Problem für infintesimal beschränkte Potentiale (Walkshop Mathematische Physik und Partielle Differentialgleichungen, Universität Bremen)
  • 19/07/16 Anwendungen von Formmethoden in der Operatortheorie (DMV-Studierendenkonferenz, TU Berlin)
  • 23/06/16 How to avoid division by zero (PhD Seminar, TU Chemnitz)
  • 26/11/15: Form methods (PhD Seminar, TU Chemnitz)
  • 21/05/15: The Dirichlet-to-Neumann operator (PhD Seminar, TU Chemnitz)

Diplomarbeit

Anwendung einer verallgemeinerten Formmethode in der Operatortheorie und für Divergenzformoperatoren (01/12/2015, TU Chemnitz, Betreuer: Prof. Dr. Peter Stollmann)