Springe zum Hauptinhalt
Fakultät für Maschinenbau
Professurinhaber
Fakultät für Maschinenbau 

Prof. Dr.-Ing. habil. Michael Groß

1977-1979: Grundschule Münchweiler an der Alsenz.
1979-1981: Grundschulabschluss, Campschule Abu Kamash, Libyen.
1981-1986: Hauptschulabschluss, Hauptschule Winnweiler.
1986-1989: Gesellenprüfung als Elektromechaniker/Mittlere Reife, MHK Kaiserslautern.
1989-1992: Allgemeine Hochschulreife, Technisches Gymnasium Kaiserslautern.
1992-1994: Studium der Informatik und Elekrotechnik, TU Kaiserslautern.
1994-2000: Diplom Maschinenbau, TU Kaiserslautern.
2000-2004: Promotion in Mechanik, TU Kaiserslautern.
2004-2009: Venia legendi für Mechanik, Universität Siegen.
2009-2011: Akademischer Oberrat am Lehrstuhl für Numerische Mechanik, Universität Siegen.
2011-jetzt: Leiter der Professur Technische Mechanik/Dynamik an der TU Chemnitz

DFG-Projekt GR 3297/10-1

In der Finite-Elemente-Simulation bewegter Kontinua gibt es zahlreiche Beispiele in denen ein betrachtetes Kontinuum aus mehreren eingebetteten Phasen besteht. Dabei können die Phasen beispielsweise ein flexibler Festkörper sein, ein Fluid, sowie ein starrer Festkörper. Dazu zählt das Beispiel eines Rotors in einer Newtonschen Flüssigkeit, sowie das Beispiel eines Faserverbundwerkstoffes betrachtet als zweiphasiger Festkörper. Die Formulierung der Fluid-Struktur-Interaktion (FSI) des ersten Beispiels mittels wohlbekannter Finite-Elemente-Methoden besitzt aber Effizienz- und Stabilitätsnachteile bei großen Rotationen eingebetteter Phasen. Bekannte Gründe sind schwierige Approximationen konvektiver Terme, unzureichende Vernetzungen von Flächenkontaktbereichen, sowie häufige Neuvernetzungen der Phasen. Die Simulation der Struktur-Struktur-Interaktion des zweiten Beispiels führt auf große Rechenzeiten, da die Vernetzung der eingebetteten Phasen die Elementeanzahl der umgebenden Phasen bestimmt. Der Grund hier ist ebenfalls die notwendige, ausreichende Approximation von Flächenkontaktbereichen. Diese Nachteile können vermieden werden mit einer Immersed-Finite-Elemente-Methode (I-FEM). Ziele dieses Forschungsvorhabens sind die Entwicklung und Implementierung einer neuen strukturerhaltenden I-FEM für dynamische, nicht-isotherme Mehrphasenkontinua. Dabei werden Fluide als auch Festkörper berücksichtigt. Um Festkörper mit starren Teilbereichen zu berücksichtigen, wird eine neuartige nicht-isotherme Starrkörperformulierung entwickelt, die direkt auf einer Finite-Elemente-Methode aufbaut. Dabei wird durch mikropolare Rotationsfreiheitsgrade die Undeformierbarkeit des starren Teilnetzes sichergestellt. Es wird ein variations-basierter Ansatz verwendet, der ohne die Einführung eines Eulertensors auskommt. Starrkörperbereiche eines sonst flexiblen Festkörpers können dadurch über eine einfache Deklaration in einem Gesamtnetz definiert werden. Somit sind auch thermomechanische Kopplungen zwischen nicht-isothermen Starrkörpern, Festkörpern und Fluiden einfach zu simulieren. Bekannte I-FEM setzen ein ortsfestes Eulersches Netz für das gesamte Kontinuum voraus und behandeln nur für eingebettete Phasen ein Lagrangesches Netz. Diese Restriktion wird in diesem Forschungsvorhaben aufgehoben um auch große Deformationen mehrphasiger, nicht-isothermer Festkörper mit der I-FEM zu simulieren. Aber auch FSI-Simulationen mit einem Eulerschen FE-Netz für ein umgebendes Fluid werden mittels der neuen strukturerhaltenden, nicht-isothermen I-FEM verbessert. Es entstehen neue Raum-Zeit-Approximationen die eine numerische Stabilitätssteigerung ohne vom Benutzer einzustellende Stabilitätsparameter bewirken.

DFG-Projekt GR 3297/7-1

Die Modellierung und Simulation gekoppelter, multiphysikalischer Probleme in Wissenschaft und Technik ist Gegenstand aktueller Forschung. Ziel ist dabei die möglichst exakte Modellierung aller einseitigen und gegenseitigen Wirkungen zwischen den unterschiedlichen Bereichen der Physik. Dadurch werden für komplexe Systeme Verhaltensprognosen und eine gezielte technische Beeinflussung ermöglicht. Ein Beispiel ist die induzierte Deformation eines Kontinuums durch äußere multiphysikalische Einwirkungen. Die Deformation kann zur Bewegung des Kontinuums selbst, aber auch zur Bewegung von Körpern an den Kontinuumsrändern führen. Dies ist mit einem flüssigkristallinen Elastomermaterial möglich, welches große Deformationen infolge äußerer Anregung durch Temperaturfelder oder ultravioletem Licht ermöglicht, und Aufgaben teurerer und schwererer Bewegungsmechanismen übernehmen kann. In der Entwicklung von Anwendungen solcher künstlicher Materialien während einer Konstruktion von Apparaten, Aktuatoren und Leichtbaustrukturen werden immer mehr transiente, numerische Simulationen eingesetzt. Dies reduziert die Anzahl von zeit- und kostenintensiven, experimentellen Untersuchungen, und leistet so einen Beitrag zur Schonung von Materialressourcen und Energie. Gerade bei heterogenen Polymermaterialien wie einem flüssigkristallinen Elastomermaterial, kann die gezielte Anwendung simulativ entwickelt und optimiert werden. Dazu wird eine langzeitstabile Simulationsmethode empfohlen, die sich mit bestehenden Finite-Elemente-Methoden nahtlos verbinden lässt, und somit auch Mehrkörpersimulationen erleichtert. Als langzeitstabil gelten variationelle Materialmodelle und Simulationsmethoden ergänzt durch energie-impuls-konsistente Zeitintegrationsalgorithmen. Das Ziel des beantragten Forschungsvorhabens ist daher die variationelle Modellierung des mikro-makro-mechanischen Materialverhaltens eines flüssigkristallinen Elastomermaterials durch ein neuartiges verallgemeinertes Kontinuum basierend auf Funktionalformulierungen. Dies ermöglicht eine Simulation mittels materialspezifischer, gemischter Finite-Elemente-Methoden, und führt auf eine versteifungsfreie Raumdiskretisierung der Elastomerbauteile. Um dynamische Simulationen multiphysikalisch, induzierter Bewegungen numerisch stabil und CPU-Zeit-effizient durchzuführen, soll eine energie-impuls-konsistente Zeitintegration entwickelt und implementiert werden. Durch eine automatische Zeitschrittweitenregelung führen diese Algorithmen in Verbindung mit versteifungsfreien Raumdiskretisierungen weniger Berechnungsschritte aus, und erfüllen dabei alle Bilanzgleichungen eines verallgemeinerten Kontinuums und gekoppelten Problems algorithmisch exakt.

DFG-Projekt GR 3297/6-1

In technischer Forschung und Materialwissenschaft wird mehr und mehr die numerische Simulation zur Vorentwicklung eingesetzt, um finanziell- und zeitaufwendige experimentelle Untersuchungen zu reduzieren. Zum Beispiel bei Verbundwerkstoffen bietet die numerische Simulation die Möglichkeit bedarfsgerechte Werkstoffverbunde simulativ zu ermitteln, bevor die Verbunde physikalisch hergestellt werden. Dadurch kann viel Zeit und hohe Kosten bei der Probenerzeugung eingespart werden, da weniger Varianten produziert werden müssen. Ebenso wird ein Beitrag zur Schonung von Ressourcen und Energie geleistet. Um bedarfsgerechte Werkstoffverbunde mittels der weitverbreiteten Finite-Elemente-Methode zu ermitteln, bedarf es einer möglichst exakten Modellierung der für die betrachtende Belastungs- und Bauteilart notwendigen Phänomene. Bei den für Polymerverbunde typischen dünnwandigen Bauteilen ist eine genaue Beschreibung des Biegeverhaltens in einer numerischen Simulation unbedingt notwendig. Besonders bei dynamischen Belastungen sollen Biegeschwingungen numerisch möglichst exakt vorhersagbar sein, um den umgebenden Bauraum und eine angemessene Befestigung eines Bauteils konstruktiv zu gestalten. Dazu müssen numerische Versteifungseffekte einer Finite-Elemente-Vernetzung vermieden, und physikalische Steifigkeiten eines Materials modelliert werden. Bei faserverstärkten Kunststoffen mit einem überwiegenden Volumenanteil durch biegesteife Fasern in drei-dimensional gewobenen Faserverbunden ist somit die Betrachtung der Faserbiegesteifigkeit notwendig. Besonders bei dynamischen Belastungen ist auch die Modellierung von Trägheitsveränderungen durch Fasern ein Beitrag zur präziseren Berechnung von Biegeschwingungen.

DFG-Projekt GR 3297/4-2

Bei der maschinellen Herstellung von rotationssymmetrischen Körpern aus faserverstärkten Kunststoffen (FVK) wie Rohren, Achsen oder Wellen nach einem Wickelverfahren werden sogenannte Rovings verwendet. Rovings sind Faserbündel aus parallel angeordneten Endlosfäden oder Filamenten. Die Anzahl der Filamente liegt im Bereich von mehreren Tausend. Somit ergeben sich Faserbündel mit einem Durchmesser im Millimeterbereich. Weiterhin werden Rovings durch Weben (drei-dimensionale Fertigungstechnik) zu zwei-dimensionalen Faserhalbzeugen für die Herstellung von FVK-Bauteilen verwendet. Ein anderes Fertigungsverfahren ist die Tailored-Fiber-Placement-Technologie, in der Rovings mittels Bindfäden auf einem Basismaterial fixiert werden. Bei diesen Fertigungsverfahren werden also immer Faserbündel (Rovings) verwendet. Die Anisotropie der mechanischen Eigenschaften der resultierenden Metamaterialen kann wie im Projekt GR 3297/4-1 durch Strukturtensoren modelliert werden. Aber eine wichtige Eigenschaft kommt durch die Verarbeitung von Faserbündel im Vergleich zur Verarbeitung von Filamenten hinzu: die Biegesteifigkeit der Rovings. Eine physikalische Biegesteifigkeit durch eingebettete Rovings wird im Projekt GR 3297/4-1 durch die Strukturtensoren und die verwendeten Tensorinvarianten nicht modelliert. Es werden implizit unendlich dünne Fasern angenommen. Die Biegesteifigkeit der Rovings macht sich bei einer Biegung von FVK-Bauteilen durch große Krümmungsradien unter Last, und kleine Krümmungsradien an lastfreien Rändern bemerkbar. Somit wird ein Finite-Elemente-Netz durch die gemischten Finite-Elemente-Methoden aus Projekt GR 3297/4-1 eindeutig weicher berechnet als experimentelle Ergebnisse es vorhersagen. Dies würde zu einer unnötig starken und damit schweren Dimensionierung führen. Ziel des Fortsetzungsprojektes GR 3297/4-2 ist der Einbezug der korrekten physikalischen Biegesteifigkeit von aus Rovings hergestellten FVK-Bauteilen, sodass die daraus resultierenden Energie-Impuls-Verfahren künstliche Versteifungen durch eine optimale Kombination aus den gemischte Elementeformulierungen des Projektes GR 3297/4-1 verhindern, aber exakte physikalische Steifigkeiten bei der Simulation berechnen. Weiterhin soll eine weitere Realität bei der Simulation beachtet werden: die Veränderung dynamischer Eigenschaften durch die resultierende Materialinhomogenität. Denn es liegt bei den genannten Fertigungsverfahren ein Mehrskalenproblem mit einer makroskopischen Ebene (Bauteil), einer mesoskopischen Ebene und einer mikroskopischen Ebene (Faserbündel) vor. Im Fall gewebter FVK repräsentiert die mesoskopische Ebene das repräsentative Volumenelement, aus dem das Gewebe besteht.

DFG-Projekt GR 3297/4-1

Die Verwendung faserverstärkter Kunststoffe im Leichtbau ermäglicht eine kostenreduzierte Herstellung technischer Produkte und eine energieeffiziente Nutzung mobiler Systeme. Weiterhin sorgen faserverstärkte Kunststoffe aufgrund ihrer inhärenten Schwingungsdämpfung fär eine hohe Laufruhe in mobilen Systemen, und damit für eine Lärmentlastung deren Umwelt. Insbesondere schwergewichtige Metalle können durch eine Optimierung der Faserorientierung im Hinblick auf Zugfestigkeitsanforderungen von kontinuierlichen Bauteilen durch faserverstärkte Kunststoffe ersetzt werden. Angestrebt wird, dass diese Optimierung im Vorfeld durch numerische Simulationen kostengünstig durchgeführt wird. Um eine möglichst reale numerische Aussage über Bewegungs- und Materialzustand dieser Bauteile treffen zu können, muss neben einer thermodynamisch-konsistenten Materialmodellierung, daran angepasste spezielle Kontinuumselemente zur räumlichen Diskretisierung, auch spezielle physikalisch-konsistente Zeitintegrationsalgorithmen verwendet werden. Das Ziel des beantragten Forschungsvorhabens ist die Entwicklung solcher physikalisch-konsistenter Zeitintegrationsalgorithmen für grosse Bewegungen und Deformationen faserverstärkter Kunststoffe, die eine spezielle Modellierung und Raumdiskretisierung dieses anisotropen Materials berücksichtigt. Um die physikalische Konsistenz während der Simulation unabhängig von der Wahl der Elementabmessung beziehungsweise der Zeitschrittweite zu gewährleisten, muss die Zeitintegration an die Materialmodellierung und deren physikalisch-konsistenten Raumdiskretisierung angepasst werden. Als spezielle Modellierung des elastischen Verhaltens soll die neuartige polykonvexe Hyperelastizität basierend auf einer polykonvexen anisotropen freien Energiefunktion verwendet werden, welche den Deformationsgradienten, dessen adjungierten Tensor und dessen Determinante als unabhängige Feldvariablen betrachtet. Die nachfolgende Raum-Zeitdiskretisierung baut auf der Unabhängigkeit dieser Felder auf.

DFG-Projekt GR 3297/2-2

Die immerwährende Steigerung der Leistungsfähigkeit von elektronischen Rechenanlagen, ermöglicht heutzutage eine numerische Analyse thermodynamischer Prozesse, die beidseitige Wechselwirkungen gekoppelter physikalischer Felder vollständig berücksichtigt. Somit können diese Prozesse schneller und kostengünstiger optimiert werden. In der numerischen Analyse sollten deshalb Zeitintegratoren verwendet werden, die beidseitige Wechselwirkungen numerisch exakt wiedergeben, und zudem robust simulieren. Dies ist gewährleistet, wenn eine Zeitdiskretisierung mit algorithmischer Reproduktion physikalischer Strukturen erfolgt, das heisst Strukturmerkmale wie Bilanzgleichungen und materialspezifische Strukturgleichungen auch diskret unabhüngig von der Zeitdiskretisierung erfüllt sind. Im Vergleich zu Standardverfahren können mit strukturerhaltenden Zeitintegratoren deshalb Prozesse auch mit grober Zeitdiskretisierung simuliert werden. Das Ziel des beantragten Forschungsvorhabens ist, die entwickelten strukturerhaltenden Zeitintegratoren noch anwendungsfreundlicher zu gestalten. Die neuen Algorithmen sollen unter Beibehaltung der erreichten Strukturerhaltung eine individuelle Anpassung der Zeitdiskretisierung in jedem gekoppelten Feld vornehmen, und gleichzeitig eine strukturerhaltende Anpassung des räumlichen Finite-Elemente-Netzes durchführen. Die Anpassung der Zeitdiskretisierung wird durch eine entsprechende Verteilung von Stützstellen zeitlicher Ansatzfunktionen auf einem gegebenen Zeitschritt erreicht. Aber diese p-Adaption wird nicht wie üblich fehlergesteuert verlaufen, sondern strukturerhaltungsgesteuert sein. Die räumliche Finite-Elemente-Adaption basiert auf der Bestimmung von Knotenpositionen mittels der Bilanzgleichung der materiellen Krüfte des Kontinuums (r-Adaption).

DFG-Projekt GR 3297/2-1

Die Steigerung der Hardwareperformance in den letzten Jahren macht es möglich, komplexe physikalische Systeme numerisch zu analysieren, ohne die Wechselwirkungen aller beteiligten physikalischen Felder zu vernachlässigen. Somit können diese Systeme schneller und kostengünstiger optimiert werden. In der Simulation thermodynamischer Systeme ist es deshalb wichtig Zeitintegratoren anzuwenden, die Wechselwirkungen physikalisch exakt wiedergeben und zudem robust sind. Ein Zeitintegrator für die Thermodynamik wird durch die exakte Reproduktion der physikalischen Struktur nach einer Diskretisierung weitaus robuster. Zu der physikalischen Struktur eines Kontinuums zählen neben Bilanzgleichungen auch materialspezifische Strukturgleichungen. Mit diesen strukturerhaltenden Zeitintegratoren können Bewegungen mit Zeitschrittweiten berechnet werden, die bei Standardverfahren zu unphysikalischen Ergebnissen führen, und auch die Zeitschrittweite während der Simulation verändert werden. Deshalb ist ein Ziel des Forschungsvorhabens neue Verfahren zu konstruieren, die Strukturmerkmale des betrachteten Kontinuums nach einer Diskretisierung exakt reproduzieren. Das zweite Ziel des Forschungsvorhabens ist dabei einen neuen Weg bei der Konstruktion dieser Verfahren zu beschreiten. Die bisherigen strukturerhaltenden Zeitintegratoren für die Thermodynamik nichtlinearer flexibler Körper wurden im Rahmen einer Lagrangeschen Sichtweise formuliert. In dem geplanten Forschungsvorhaben sollen die Zeitintegratoren mittels einer Poissonschen Darstellung konstruiert werden. Der Vorteil dieser Poissonschen Beschreibung liegt in einem direkt abschätzbaren Stabilitätsverhalten für nichtlineare Probleme im Sinne Lyapunov's, welches auch auf das Verhalten numerischer Algorithmen Einfluss nimmt.

DFG-Projekt GR 3297/1-1

Die numerische Zeitintegration grosser Bewegungen von steifen Festkörpern ist seit Jahrzehnten Gegenstand intensiver Forschung. Insbesondere wurde ein Zusammenhang zwischen numerischer Stabilität und exakter Energieerhaltung gefunden. Die Erhaltung des Gesamtimpulses und -drehimpulses bei freien Bewegungen führt zu einer weiteren qualitativen Verbesserung der Lösung. Die Folge war eine intensive Entwicklung sogenannter erhaltender Verfahren für hyperelastische Materialien. Dieses Bestreben führte zunächst auf Verfahren mit begrenzter Genauigkeitsordnung, da deren Ursprung ein finites Differenzenverfahren war. Erst durch die Anwendung einer Finite-Elemente-Methode in der Zeit folgten erhaltende Verfahren für die Elastodynamik mit einer beliebigen Genauigkeitsordnung. Im beantragten Forschungsvorhaben soll dieser Ansatz weiterverfolgt werden, um auch Bewegungen dissipativer Materialien energie-konsistent zu berechnen. Bei freien Bewegungen soll auch eine exakte Impuls- und Drehimpulserhaltung gegeben sein. Die Verwendung einer Raum-Zeit-Finite-Elemente-Methode erlaubt die Entwicklung energie-konsistenter Verfahren beliebiger Genauigkeitsordnung. Im ersten Teil des Vorhabens soll ein bewährtes nichtlineares finites viskoelastisches Materialmodell behandelt werden, welches auf deformationswertigen inneren Variablen basiert. Bei diesem Material herrscht eine innere Dissipation in Form einer quadratischen Form bezüglich der konjugierten Ungleichgewichtsspannung. Im zweiten Teil wird ein nichtlineares finites thermoelastisches Materialmodell betrachtet. Der Ansatz der klassischen Wärmeleitung führt auf eine Dissipation bezüglich des Temperaturgradienten. Der letzte Teil des Vorhabens behandelt die Kopplung dieser beiden Probleme durch die Behandlung eines thermoviskoelastischen Materialmodells.

Ein rotierendes Leichtbau-Wärmerohr

Struktuerhaltende Zeitintegratoren sind Zeitintegrationsverfahren, welche physikalische Gesetze eines thermodynamischen Systems exakt bewahren. Sie wurden bislang konstruiert um die numerische Langzeitstabilität und die Robustheit gegenüber transienter Lasten und Zeitschrittweitenänderungen zu steigern. In einem zentralen Forschungsvorhaben der Professur soll überprüft werden, ob die strukturerhaltenden Eigenschaften dieser Zeitintegratoren auch zu einer besseren Übereinstimmung mit experimentellen Daten führt. Dazu wird ein komplexes thermodynamisches System aufgebaut und simulativ nachgemittelt: das rotierende Wärmerohr. Ein rotierendes Wärmerohr (rotating Heatpipe) ist eine Apparatur um Wärme vom einen Ende zum anderen Ende einer Hohlwelle zu transportieren. Am einen Ende besteht eine Wärmequelle gegeben durch eine Induktionsspule oder ein Wasserbad, und am anderen Ende eine Wärmesenke in Form eines Wasserbades. Der Mittelteil des Rohres ist adiabatisch isoliert um Wärmeverluste zu minimieren. Die Wärme wird durch einen Kondensatfilm eines gasförmigen Fluides zur Wärmesenke transportiert, welcher durch die grossen Zentrifugalkräfte bei hohen Drehzahlen entlang einer konischen Innenwand fliesst. Im Inneren des Rohres erreicht das Fluid seinen gasförmigen Zustand und steigt zur Wärmequelle auf. Somit entsteht ein thermodynamischer Kreislauf.
In diesem Projekt wird auf Basis von MATLAB- und C-Routinen das Finite-Elemente-Programm PolySIM entwickelt, dass den schwierigen Kompromiss zwischen schnell modifizierbarem Wissenschaftscode und effizienter Programmierung eingehen soll. Deshalb wurde eine schleifenlose Implementierung gewählt, die das Kontinuum als Ganzes in jedem Rechenschritt betrachtet. PolySIM verlässt hier die standardmässige Implementierung von FEM-Programmen. Die implementierten Materialroutinen sind auf gefüllte und ungefüllte Polymere ausgerichtet, da ein metallgefülltes rotierendes Polymerrohr transient simuliert werden soll. Die Zeitintegration ist Galerkin-basiert auf Basis schwacher Formen pseudo-variationeller Formulierungen aufgebaut. Im einfachsten Fall folgen Gauss-Runge-Kutta- Verfahren. Die Zeitintegration ist zudem energie-konsistent und von beliebiger Genauigkeitsordnung. Sie kann für verschiedene Variablen auf verschiedenen Zeitskalen erfolgen. Es liegt somit eine multiskalen Integration in der Zeit vor. PolySIM wird auf eine strukturerhaltende zeitliche und räumliche Adaptivität mittels variationeller Integratoren erweitert. Galerkin-basierte variationelle Integratoren sind transformierbar in Gauss-Runge-Kutta-Verfahren, aber diskret nicht identisch.

Das dynamische Modellproblem 'physikalisches Doppelpendel'

Das Doppelpendel ist trotz des relativ einfachen konstruktiven Aufbaus ein Beispiel für ein chaotisches dynamisches System. Die Bewegungsgleichungen lassen sich mit grundlegenden dynamischen Prinzipien aufstellen, jedoch ist dessen Lösung analytisch nicht mehr möglich. Deshalb werden hier bereits numerische Verfahren verwendet, um Bewegungsanalysen durchzuführen. Die Verbesserung dieser Lösungsverfahren, die bei transienten Simulationen Anwendung finden, ist Gegenstand aktueller Forschung. In diesem Projekt wird ein Doppelpendel aufgebaut und dessen mechanische Systemparameter bestimmt. Die ermittelten Parameter dienen als Eingabedaten einer energiekonsistenten numerischen Simulation, deren Ergebnisse mit dem realen Bewegungsverhalten verglichen werden. Dazu dient eine Hochgeschwindigkeitskamera, welche mit kommerziellen Auswertealgorithmen gekoppelt ist. So können Aussagen über die Güte der numerischen Simulation getroffen werden. Man spricht von experimenteller Validierung.
In diesem Projekt werden die Vorteile eines physikalisch-konsistenten Zeitintegrationsverfahrens anhand der Bewegung eines physikalischen Doppelpendels gegenüber der konventionellen Mittelpunktsregel (MPR) untersucht. Die in der Praxis auftretenden Energieverluste, zum Beispiel durch Lagerreibung und durch Luftwiderstand, werden hierbei durch ein viskoses Dämpfungsmodell berücksichtigt. Nach Aufstellung des Zeitschrittverfahrens mithilfe der HAMILTONschen Bewegungsgleichungen (BGL) und des PETROV-GALERKIN (PG) - Verfahrens wurde das auftretende Zeitintegral mithilfe der MPR sowie des physikalisch-konsistenten diskreten Gradienten (DG) approximiert. Die Umsetzung und Programmierung erfolgte mithilfe der Software MATLAB. Zur Lösung des nichtlinearen Gleichungssystems wurde ein NEWTON-RAPHSON-Verfahren implementiert. Im Rahmen einer Plausibilitätsuntersuchung konnte die Richtigkeit des Verfahrens an sich, sowie der Implementierung gezeigt werden. Im Ergebnis ist bei Verwendung des DGen eine verbesserte numerische Stabilität sowie eine physikalisch korrekte Lösung bestätigt worden. Bei Verwendung der MPR ist dies im Allgemeinen nicht der Fall. Zur Berechnung werden experimentell ermittelte Systemparameter verwendet.

Publikationen im Jahr 2024

  • Concas F. and Groß M. (2024), Dynamic large strain formulation for nematic liquid crystal elastomers. 16th International Conference on Advanced Computational Engineering and Experimenting, Heraklion, Greece, 3-7 July 2023, Contin. Mech. and Thermodyn., 2024, DOI: 10.1007/s00161-024-01307-2.

Publikationen im Jahr 2023

  • Groß M., Dietzsch J. and Concas F. (2023), A new mixed finite element formulation for reorientation in liquid crystalline elastomers. Joy of Mechanics thematic conference (JoyMech 2022), Chalmers University of Technology, Gothenburg, Schweden, 24-26 August 2022, Eur. J. Mech. A Solids 104828, 2023, DOI: 10.1016/j.euromechsol.2022.104828
  • Concas F. and Groß M. (2023), Principle of virtual power and drilling degrees of freedom for dynamic modelling of the behavior of liquid crystal elastomer films. 15th International Conference on Advanced Computational Engineering and Experimenting, Florence, Italy, 3-7 July 2022, Contin. Mech. and Thermodyn., 2023, DOI: 10.1007/s00161-023-01221-z.
  • Dietzsch J., Kalaimani I. and Groß M. (2023), Incorporation of thermal effects into the energy-momentum consistent elastic model for fiber-bending stiffness in composites, Proc. Appl. Math. Mech., 22, doi:10.1002/pamm.202200261 .

Publikationen im Jahr 2022

  • Groß M., Dietzsch J. and Kalaimani I. (2022), An energy-momentum couple stress formula for variational-based macroscopic modelings of roving-matrix composites in dynamics, Computer Methods in Applied Mechanics and Engineering, 389, 2022. DOI 10.1016/j.cma.2021.114391.
  • Groß M., Dietzsch J. and Concas F. (2022), A VARIATIONAL-BASED MIXED FINITE ELEMENT FORMULATION FOR LIQUID CRYSTAL ELASTOMERS. ECCOMAS Congress 2022 - The 8th European Congress on Computational Methods in Applied Sciences and Engineering, Oslo, Norway, 5-9 June 2022, DOI: 10.23967/eccomas.2022.034.
  • Kalaimani I., Dietzsch J. and Groß M. (2022), ENERGY-MOMENTUM CONSERVING DYNAMIC VARIATIONAL MODELING OF FIBER-BENDING STIFFNESS IN COMPOSITES. ECCOMAS Congress 2022 - The 8th European Congress on Computational Methods in Applied Sciences and Engineering, Oslo, Norway, 5-9 June 2022, DOI: 10.23967/eccomas.2022.109.
  • Dietzsch J., Groß M. and Kalaimani I. (2022), MIXED FINITE ELEMENT FORMULATIONS AND ENERGY-MOMENTUM TIME INTEGRATORS FOR THERMO-VISCOELASTIC GRADIENT-BASED FIBER-REINFORCED CONTINUA. ECCOMAS Congress 2022 - The 8th European Congress on Computational Methods in Applied Sciences and Engineering, Oslo, Norway, 5-9 June 2022, DOI: 10.23967/eccomas.2022.177.
  • Groß M., Concas F. and Dietzsch J. (2022), A New Mixed FE-Formulation for Liquid Crystal Elastomer Films. 15th World Congress on Computational Mechanics (WCCM-XV), Yokohama, Japan, 31 July - 5 August 2022. In: WCCM-APCOM2022, Volume 900 Structural Mechanics, Dynamics and Engineering, 2022, DOI: 10.23967/wccm-apcom.2022.007.
  • Weise S., Buschner T. and Groß M. (2022), Developing a heat pipe for rotating mechanical components to improve thermal conductivity, Proc. Appl. Math. Mech., 22, submitted.

Publikationen im Jahr 2021

  • Groß M., Dietzsch J. and Kalaimani I. (2021), An energy-momentum scheme for extended continuum models with rotational degrees of freedom, Proc. Appl. Math. Mech., 21, doi:10.1002/pamm.202100004 .
  • Kalaimani I., Dietzsch J. and Groß M. (2021), Modeling of fiber-bending stiffness in fiber-reinforced composites with a dynamic mixed finite element method based on the principle of virtual power, Proc. Appl. Math. Mech., 21, doi:10.1002/pamm.202100006 .
  • Groß M., Dietzsch J., Kalaimani I. and Saleh T. (2021), VARIATIONAL COMPUTATIONAL MODELLING OF DYNAMICAL BEHAVIOUR OF FIBER ROVING COMPOSITES WITH INELASTIC ANISOTROPIC CONTINUA AND THERMO-MECHANICAL COUPLING, IX International Conference on Coupled Problems in Science and Engineering, Cagliari, Italy, 13-16 June 2021, doi:10.23967/coupled.2021.061 .
  • Groß M., Dietzsch J. and Kalaimani I. (2021), Theory and numerics of a novel non-isothermal constrained micropolar continuum formulation derived by a mixed principle of virtual power, 14th International Conference on Advanced Computational Engineering and Experimenting, Malta, 04-08 July 2021, abstract , paper .
  • Dietzsch J., Groß M. and Kalaimani I. (2021), A mixed finite element formulation for energy-momentum time integrations of composites with fiber bending stiffness, Proc. Appl. Math. Mech., 21, doi:10.1002/pamm.202100201 .
  • Dietzsch J., Groß M. and Kalaimani I. (2021), ENERGY-MOMENTUM TIME INTEGRATION OF GRADIENT-BASED MODELS FOR FIBER-BENDING STIFFNESS IN ANISOTROPIC THERMO-MECHANICAL CONTINUA, IX International Conference on Coupled Problems in Science and Engineering, Cagliari, Italy, 13-16 June 2021, doi:10.23967/coupled.2021.024 .
  • Dietzsch J., Groß M. and Kalaimani I. (2021), Energy-momentum time integration of gradient-based models for fiber-bending stiffness in anisotropic thermo-viscoelastic continua, VI ECCOMAS Young Investigators Conference, Valencia, Spain, 07-09 July 2021, abstract p. 120 , paper p. 89, DOI: http://dx.doi.org/10.4995/YIC2021.2021.15320 .
  • Kalaimani I., Dietzsch J. and Groß M. (2021), Momentum conserving dynamic variational approach for the modeling of fiber-bending stiffness in fiber-reinforced composites, VI ECCOMAS Young Investigators Conference, Valencia, Spain, 07-09 July 2021, abstract p. 151 , paper p. 214, DOI: http://dx.doi.org/10.4995/YIC2021.2021.15320.

Publikationen im Jahr 2020

  • Groß M., Dietzsch J. and Röbiger C. (2020), Non-isothermal energy-momentum time integrations with drilling degrees of freedom of composites with viscoelastic fiber bundles and curvature-twist stiffness, Computer Methods in Applied Mechanics and Engineering, 365, 2020. doi.org/10.1016/j.cma.2020.112973.
  • Bartelt M., Klöckner O., Dietzsch J. and Groß M. (2020), Higher order finite elements in space and time for anisotropic simulations with variational integrators. Application of an efficient GPU implementation, Mathematics and Computers in Simulation, 170:164-204, 2020. DOI 10.1016/j.matcom.2019.09.018.
  • Kern D., Gypstuhl R. and Groß M. (2020), Dynamic Stability of Viscoelastic Bars under Pulsating Axial Loads, Proc. Appl. Math. Mech., 20: doi:10.1002/pamm.202000004 .
  • Groß M., Dietzsch J. and Röbiger C. (2020), An energy-momentum space-time discretization of a constrained micropolar continuum for 3D fiber-reinforced composites, Proc. Appl. Math. Mech., 20: doi:10.1002/pamm.202000002 .
  • Groß M., Dietzsch J. and Kalaimani I. (2020), ENERGY-MOMENTUM SCHEME WITH DRILLING DEGREES OF FREEDOM FOR COMPOSITES WITH CURVATURE-TWIST STIFFNESS. ECCOMAS Congress 2020 - 14th World Congress on Computational Mechanics (WCCM), Paris, France, 19-24 July 2020, doi:10.23967/wccm-eccomas.2020.135
  • Dietzsch J. and Groß M. (2020), MIXED FINITE ELEMENT FORMULATIONS FOR POLYCONVEX ANISOTROPIC MATERIAL FORMULATIONS. ECCOMAS Congress 2020 - 14th World Congress on Computational Mechanics (WCCM), Paris, France, 19-24 July 2020, doi:10.23967/wccm-eccomas.2020.201 .
  • Dietzsch J., Groß M., and Schuffenhauer R. F. (2020), Mixed finite element formulations and energy-momentum time integrators for thermo‐viscoelastic fiber‐reinforced continua, Proc. Appl. Math. Mech., 20: doi:10.1002/pamm.202000267 .

Publikationen im Jahr 2019

  • Groß M., Dietzsch J. and Röbiger C. (2019), A mixed B-bar formulation derived by a principle of virtual power for energy-momentum time integrations of fiber-reinforced continua, Computer Methods in Applied Mechanics and Engineering, 350: 595-640, 2019. doi.org/10.1016/j.cma.2019.03.027.
  • Groß M. and Dietzsch J. (2019), Variational-based locking-free energy–momentum schemes of higher-order for thermo-viscoelastic fiber-reinforced continua, Computer Methods in Applied Mechanics and Engineering, 343: 631-671, 2019. DOI 10.1016/j.cma.2018.08.030.
  • Groß M., Dietzsch J. and Röbiger C. (2018), Locking-free higher-order energy-momentum schemes for thermo-viscoelastic fiber-reinforced materials derived by the principle of virtual power, INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2018, AIP Conference Proceedings 2116:340004, 2019 doi.org/10.1063/1.5114350 .
  • Kern D. and Groß M. (2018), A Variational Approach to Optimal Control of Underactuated Mechanical Systems with Collisions, INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2018, AIP Conference Proceedings 2116:340005, 2019, doi.org/10.1063/1.5114351.
  • Groß M., Dietzsch J. and Röbiger C. (2019), A mixed variational-based dynamic simulation method for fiber-reinforced continua in non-isothermal rotordynamical systems, Proc. Appl. Math. Mech., 19 . doi:10.1002/pamm.201900009.
  • Kern D. and Groß M. (2019), Variational Integrators and Fluid-Structure-Interaction at Low Reynolds-Number, Proc. Appl. Math. Mech., 19 . doi:10.1002/pamm.201900365.
  • Groß M., Dietzsch J. and Röbiger C. (2019), ENERGY-MOMENTUM TIME INTEGRATIONS OF A NON-ISOTHERMAL TWO-PHASE DISSIPATION MODEL FOR FIBER-REINFORCED MATERIALS BASED ON A VIRTUAL POWER PRINCIPLE, VIII International Conference on Computational Methods for Coupled Problems in Science and Engineering, Sitges (Barcelona), Spain, 3-5 June 2019. ISBN: 978-84-949194-5-9 .
  • Groß M., Dietzsch J. and Röbiger C. (2019), A variational-based energy-momentum time integration of metamaterials in non-isothermal rotordynamical systems, 8th GACM Colloquium on Computational Mechanics, University of Kassel, Germany, August 28-30, 2019. ISBN 978-3-86219-5093-9 .
  • Groß M., Dietzsch J. and Röbiger C. (2019), A higher-order energy-momentum scheme for a non-isothermal two-phase dissipation model of fibrous composites, 8th GACM Colloquium on Computational Mechanics, University of Kassel, Germany, August 28-30, 2019. ISBN 978-3-86219-5093-9 .
  • Dietzsch J., Groß M. and Flessing L. (2019), THERMO-MECHANICAL COUPLING IN FIBER-REINFORCED CONTINUA: MIXED FINITE ELEMENT FORMULATIONS AND ENERGY-MOMENTUM TIME INTEGRATION, VIII International Conference on Computational Methods for Coupled Problems in Science and Engineering, Sitges (Barcelona), Spain, 3-5 June 2019. ISBN: 978-84-949194-5-9 .
  • Dietzsch J., Groß M. and Flessing L. (2019), Mixed finite element formulations and energy-momentum time integrators for thermo-mechanically coupled fiber-reinforced continua, 8th GACM Colloquium on Computational Mechanics, University of Kassel, Germany, August 28-30, 2019. ISBN 978-3-86219-5093-9 .

Publikationen im Jahr 2018

  • Groß, M., Bartelt, M and Betsch P. (2018), Structure-preserving time integration of non-isothermal finite viscoelastic continua related to variational formulations of continuum dynamics. Comput. Mech. 62(2):123-150, 2018. doi: DOI 10.1007/s00466-017-1489-x.
  • Groß M., Dietzsch J. and Bartelt M. (2018), Variational-based higher-order accurate energy–momentum schemes for thermo-viscoelastic fiber-reinforced continua, Computer Methods in Applied Mechanics and Engineering, 336: 353-418, 2018. DOI 10.1016/j.cma.2018.03.019.
  • Groß M. and Dietzsch J. (2018), A MIXED ASSUMED STRAIN FINITE ELEMENT FORMULATION FOR VARIATIONAL- BASED ENERGY-MOMENTUM TIME INTEGRATIONS IN THERMODYNAMICS OF FIBER-REINFORCED CONTINUA. ECCOMAS conference ECCM-ECFD 2018 - 6th European Conference on Computational Mechanics (ECCM 6), Glasgow UK, 11-15 June 2018 pdf
  • Dietzsch J. and Groß M. (2018), MIXED FINITE ELEMENT FORMULATIONS FOR THE GALERKIN-BASED TIME INTEGRATION OF FINITE ANISOTROPIC ELASTODYNAMICS. ECCOMAS conference ECCM-ECFD 2018 - 6th European Conference on Computational Mechanics (ECCM 6), Glasgow UK, 11-15 June 2018 pdf
  • Bartelt M., Dietzsch J. and Groß M. (2018), Efficient implementation of energy conservation for higher order finite elements with variational integrators, Mathematics and Computers in Simulation, 150: 83-121, 2018. DOI 10.1016/j.matcom.2018.03.002.
  • Groß M., Dietzsch J. and Bartelt M. (2018), Thermo-viscoelastic fiber-reinforced continua simulated by variational-based higher-order energy-momentum schemes, Proc. Appl. Math. Mech., 18: 1-2. doi: 10.1002/pamm.201800003.
  • Kern D. and Groß M. (2018), Variational Integrators and Optimal Control for a Hybrid Pendulum-on-Cart-System, Proc. Appl. Math. Mech., 18: 1-2. doi: 10.1002/pamm.201800088.

Publikationen im Jahr 2017

  • Groß M. and Dietzsch J. (2017), Variational-based higher-order energy-momentum schemes with incompatible modes for fiber-reinforced materials, INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016, AIP Conference Proceedings 1863:320005, 2017, doi.org/10.1063/1.4992486 .
  • Bär S. and Groß M. (2017), Higher Order Accurate Geometric Integration in Endochronic Theory, INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016, AIP Conference Proceedings 1863:320002, 2017, doi.org/10.1063/1.4992483 .
  • Dietzsch J. and Groß M. (2017), Locking free elements for polyconvex anisotropic material formulations, Proceedings of RCM 2017 - Research Challenges in Mechanics RCM2017 .
  • Groß M. and Dietzsch J. (2017), Variational-based energy–momentum schemes of higher-order for elastic fiber-reinforced continua, Computer Methods in Applied Mechanics and Engineering, 320: 509-542, 2017. doi.org/10.1016/j.cma.2017.03.018.
  • Groß M. and Dietzsch J. (2017), Dynamic thermo-mechanical coupling in fiber-reinforced bodies simulated by higher-order variational energy-momentum schemes, Proceedings of 3rd International Conference on Multiscale Methods for Solids and Fluids, 2017, ISBN 978-961-6884-48-8.
  • Kern D. and Gross M. (2017), Energy‐optimal swing‐up of an electromechanically actuated pendulum, Proc. Appl. Math. Mech., 17: 801-802. doi: 10.1002/pamm.201710368.
  • Kern D., Wiegert B. and Groß M. (2017), Vibrations of rotors partially filled with liquids in hydrodynamically lubricated journal bearings, Proceedings of SIRM 2017 in Graz, Austria, 2017.

Publikationen im Jahr 2016

  • Krüger, M., Groß, M. and Betsch, P. (2016), An energy-entropy-consistent time stepping scheme for nonlinear thermo-viscoelastic continua. Z. angew. Math. Mech. 96, No. 2, 141–178. doi: 10.1002/zamm.201300268.
  • Groß M., Ramesh R. and Dietzsch J. (2016), ENERGY AND MOMENTUM CONSERVING VARIATIONAL BASED TIME INTEGRATION OF ANISOTROPIC HYPERELASTIC CONTINUA. ECCOMAS Congress 2016 VII European Congress on Computational Methods in Applied Sciences and Engineering Crete Island, Greece, 5-10 June 2016, ID 7883, 24 S., 2016
  • Groß M., Ramesh R. and Dietzsch J. (2016), Galerkin-based Energy-Momentum Time-Stepping Schemes for anisotropic hyperelastic Materials, Proc. Appl. Math. Mech., 16: 199-200. doi: 10.1002/pamm.201610088.
  • Bartelt M. and Groß M. (2016), ENERGY CONSERVING TIME INTEGRATION BASED ON GALERKIN-VARIATIONAL INTEGRATORS WITH CONSTRAINTS. ECCOMAS Congress 2016 VII European Congress on Computational Methods in Applied Sciences and Engineering, Crete Island, Greece, 5-10 June 2016, ID 4537, 27 S., 2016
  • Bartelt M. and Groß M. (2016), Conservation properties of higher order time stepping schemes based on variational integrators, Proc. Appl. Math. Mech., 16: 937-940. doi: 10.1002/pamm.201610425.
  • Bär S. and Groß M. (2016), Variational integration in endochronic theory for small strain elastoplastodynamics, Proc. Appl. Math. Mech., 16: 255-256. doi: 10.1002/pamm.201610116.
  • Masser R., Bartelt M. and Groß M. (2016), Structure analysis of higher-order variational integrators and implementation of SUNDMAN adaptivity in time, Proc. Appl. Math. Mech., 16: 221-222. doi: 10.1002/pamm.201610099.

Publikationen im Jahr 2015

  • Erler, N. and Groß, M. (2015), Energy-momentum conserving higher-order time integration of nonlinear dynamics of finite elastic fiber-reinforced continua. Comput. Mech. doi: 10.1007/s00466-015-1143-4.
  • Kern, D., Romero, I. and Groß, M. (2015), Variational integrators for Thermo-Viscoelastic Discrete Systems. Proc. Appl. Math. Mech., 15: 55–56. doi: 10.1002/pamm.201510018
  • Bartelt, M. and Groß, M. (2015), Variational integrators of higher order for flexible multibody systems. Proc. Appl. Math. Mech., 15: 43–44. doi: 10.1002/pamm.201510012

Publikationen im Jahr 2014

Publikationen im Jahr 2012

  • Krüger, Melanie ; Groß, Michael und Betsch, Peter: Energy-consistent time-integration for a dynamic finite deformation thermoviscoelastic continuum. In: PAMM 12 (2012), Nr. 1, S. 193–194. issn: 1617-7061. doi: 10.1002/pamm.201210087. url: http://dx.doi.org/10.1002/pamm.201210087
  • Anders, Denis.; Uhlar, Stefan; Krüger, Melanie; Groß, Michael; Weinberg, Kerstin: Investigating a flexible wind turbine using consistent time-stepping schemes. In: Engineering Computations 29 (2012), S. 661–688. url: http://www.emeraldinsight.com/doi/full/10.1108/02644401211257218
  • Krüger, Melanie ; Groß, Michael und Betsch, Peter: Dynamic finite deformation thermo-viscoelasticity using energy-consistent time-integration. European Congress on Computational Methods in Applied Sciences and Engineering ; 6 (Vienna) : 2012.09.10-14, 23 S. - Vienna : Technische Universität Wien, 2012. isbn: 978-3-9502481-9-7. url: http://www.mb.uni-siegen.de/nm/mitglieder/mueller/work/eccomas_2012_mk.pdf

Publikationen im Jahr 2011

  • Groß, Michael und Betsch, Peter: Galerkin-based energy–momentum consistent time-stepping algorithms for classical nonlinear thermo-elastodynamics. In: Mathematics and Computers in Simulation 82 (2011), Nr. 4, S. 718 –770. issn: 0378-4754. doi: 10.1016/j.matcom.2011.10.009. url: http://www.sciencedirect.com/science/article/pii/S037847541100262X
  • Krüger, M. ; Groß, M. und Betsch, P.: A comparison of structure-preserving integrators for discrete thermoelastic systems. English. In: Computational Mechanics 47 (2011), Nr., S. 701–722. issn: 0178-7675. doi: 10.1007/s00466-011-0570-0. url: http://dx.doi.org/10.1007/s00466-011-0570-0
  • Krüger, Melanie ; Groß, Michael und Betsch, Peter: Energy-consistent time-integration for dynamic finite deformation thermo-viscoelasticity. In: PAMM 11 (2011), Nr. 1, S. 239–240. issn: 1617-7061. doi: 10.1002/pamm.201110111. url: http://dx.doi.org/10.1002/pamm.201110111

Publikationen im Jahr 2010

  • Groß, M. und Betsch, P.: Energy–momentum consistent finite element discretization of dynamic finite viscoelasticity. In: International Journal for Numerical Methods in Engineering 81 (2010), Nr. 11, S. 1341–1386. issn: 1097-0207. doi:10.1002/nme.2729. url: http://dx.doi.org/10.1002/nme.2729
  • Krüger, Melanie ; Groß, Michael und Betsch, Peter: On the consistent discretization in time of nonlinear thermo-elastodynamics. In: PAMM 10 (2010), Nr. 1, S. 183–184. issn: 1617-7061. doi: 10.1002/pamm.201010084. url: http://dx.doi.org/10.1002/pamm.201010084
  • Krüger, Melanie ; Groß, Michael und Betsch, Peter: A comparison of two structure-preserving integrators for nonlinear thermo-elastodynamics. European Conference on Computational Mechanics ; 4 (Paris) : 2010.05.16-21 - Paris (France) : Palais des Congrés, 2010. url: http://www.eccm2010.org/complet/fullpaper_512.pdf

Publikationen im Jahr 2009

  • Groß, Michael: Higher-order accurate and energy-momentum consistent discretisation of dynamic finite deformation thermo-viscoelasticity. eng. 2009. url: https://nbn-resolving.org/urn:nbn:de:hbz:467-3890
  • Groß, Michael und Betsch, Peter: Higher-order energy-momentum consistent time-stepping schemes for dynamic finite thermo-viscoelasticity. In: PAMM 9 (2009), Nr. 1, S. 367–368. issn: 1617-7061. doi: 10.1002/pamm.200910157. url: http://dx.doi.org/10.1002/pamm.200910157
  • Müller, Melanie ; Groß, Michael und Betsch, Peter: Dynamic finite deformation viscoelasticity and energy-consistent time integration. In: PAMM 9 (2009), Nr. 1, S. 365–366. issn: 1617-7061. doi: 10.1002/pamm.200910156. url: http://dx.doi.org/10.1002/pamm.200910156

Publikationen im Jahr 2008

  • Groß, Michael und Betsch, Peter: Stable long-term simulation of dynamically loaded elastomers. In: PAMM 8 (2008), Nr. 1, S. 10501–10502. issn: 1617-7061. doi: 10.1002/pamm.200810501. url: http://dx.doi.org/10.1002/pamm.200810501
  • Müller, Melanie ; Groß, Michael und Betsch, Peter: Material models in principal stretches for elastodynamics. In: PAMM 8 (2008), Nr. 1, S. 10315–10316. issn: 1617-7061. doi: 10.1002/pam.200810315. url: http://dx.doi.org/10.1002/pamm.200810315

Publikationen im Jahr 2007

  • Groß, Michael und Betsch, Peter: Higher-order energy consistent time integrators for nonlinear thermoviscoelastodynamics. In: PAMM 7 (2007), Nr. 1, S. 4070007–4070008. issn: 1617-7061. doi: 10.1002/pamm.200700183. url: http://dx.doi.org/10.1002/pamm.200700183
  • Groß, Michael und Betsch, Peter: An energy consistent hybrid space-time finite element method for nonlinear thermo-viscoelastodynamics. Computational Methods for Coupled Problems in Science and Engineering ; 2 (Barcelona) : 2007.05.21-23, Barcelona (Spain) : Santa Eulalia (Spain), 2007. isbn: 978-84-96736-18-4

Publikationen im Jahr 2006

  • Groß, Michael und Betsch, Peter: An energy consistent hybrid space-time Galerkin method for nonlinear thermomechanical problems. In: PAMM 6 (2006), Nr. 1, S. 443–444. issn: 1617-7061. doi: 10.1002/pamm.200610202. url: http://dx.doi.org/10.1002/pamm.200610202

Publikationen im Jahr 2005

  • Groß, M. ; Betsch, P. und Steinmann, P.: Conservation properties of a time FE method. Part IV: Higher order energy and momentum conserving schemes. In: International Journal for Numerical Methods in Engineering 63 (2005), Nr. 13, S. 1849–1897. issn: 1097-0207. doi: 10.1002/nme.1339. url: http://dx.doi.org/10.1002/nme.1339
  • Groß, Michael und Betsch, Peter: Galerkin methods in time for semi-discrete viscoelastodynamics. In: PAMM 5 (2005), Nr. 1, S. 397–398. issn: 1617-7061. doi: 10.1002/pamm.200510175. url: http://dx.doi.org/10.1002/pamm.200510175
  • Groß M. and Betsch P. (2005), Galerkin-based discretisation of infinite-dimensional dissipative dynamical systems, Proceeding of ICCES 2005, Chennai, India ICCES2005.

Publikationen im Jahr 2004

JoyMech 2022

Liquid crystalline elastomers (LCE) belong to the class of soft materials and are capable of large deformations induced by temperature changes and ultraviolet irradiation. These materials are under investigation as actuator materials in light-weight structures. In order to numerically simulate LCE materials by using a space-time finite element method, a continuum model is necessary which combines a thermo-viscoelastic material formulation with a dissipative reorientation process of mesogens. Mesogens are rigid and rod-shaped molecules linked with the polymer chains of the elastomer. The dissipative reorientation of the mesogens can be described by a combination of an independent field of orientation vectors with unit length and micropolar rotational degrees of freedom. The orientation vector field follow from a partial differential equation and possesses initial-boundary conditions. The unit length of the orientation vector field for any time is guaranteed by a local rotation with the micropolar rotational degrees of freedom. The dissipative reorientation process is introduced by a local time evolution equation with respect to the micropolar rotational degrees of freedom. This is analogous to thermo-viscoelasticity and can be variationally-based formulated. In this paper, we present this new variational-based reorientation finite element formulation in a dynamical framework. We arrive at an energy-momentum consistent mixed finite element formulation with a Galerkin-based time integration.

WCCM 2022 (virtual congress)

Liquid crystal elastomers (LCEs) are soft materials, which are capable of large deformations induced by temperature changes and ultraviolet irradiation. Therefore, since many years, these materials are under investigation in experimental researches as actuator materials. LCEs arise from a nematic polymer melt, consisting of long and flexible polymer chains as well as oriented and rigid rod-like molecules, the so-called mesogens, by crosslinking. After this process, the flow ability and the orientation of the mesogens is retained. To date, the alignment of LCEs is primarily achieved in thin films. When the orientational order in the film is lost due to temperature changes or ultraviolet irradiation, the LCE film is capable of length changes of 400 percent. In order to numerically simulate LCE materials as actuators in multibody system models by using the finite element method, a continuum formulation is necessary, which include in a thermo-viscoelastic material formulation of the polymer chains the orientation effects of the mesogens. This can be performed by introducing a normalized direction vector $\mathbf{n}_t$ as an independent field, and deriving from additional (orientational) balance laws independent differential equations. These differential equations describe the independent rotation of the rigid mesogens connected with the flexible polymer chains. The orientation-dependent stress law of LCEs arises from an anisotropic free energy, comparable with fibre-reinforced materials. But, in contrast to the literature, the direction vector of a LCE model has to be independent. Newly, we apply a variational principle for deriving a new mixed finite element (FE) formulation, which is based on drilling degrees of freedom for describing the mesogens rotation. This principle leads to an extended set of balance laws which is preserved by an energy-momentum scheme.

ECCOMAS Congress 2022

Liquid crystal elastomers (LCEs) are soft materials, which are capable of large deformations induced by temperature changes and ultraviolet irradiation. Since many years, these materials are under investigation in experimental researches as actuator materials. LCEs arise from a nematic polymer melt, consisting of long and flexible polymer chains as well as oriented and rigid rod-like molecules, the so-called mesogens, by crosslinking. In order to numerically simulate LCE materials by using the finite element method, a continuum model is necessary, including in a thermo-viscoelastic material formulation of the polymer chains the orientation effects of the mesogens. This can be performed by introducing a normalized direction vector as an independent field, and deriving from additional (orientational) balance laws independent differential equations. These differential equations describe the independent rotation of the rigid mesogens connected with the flexible polymer chains. The orientation-dependent stress law of LCEs arises from an anisotropic free energy, comparable with fibre-reinforced materials. But, in contrast to fibre-reinforced materials, the direction vector of a LCE model has to be independent. In contrast to well-known references, we apply a variational principle for deriving a new mixed finite element formulation, which is based on drilling degrees of freedom for describing the mesogens rotation. This principle leads to an extended set of balance laws.

ACEX 2021 (hybrid event)

3D fiber-reinforced composites require a special finite element simulation technique, because they consist of fiber bundles. Therefore, in the corresponding representative volume element, secondary effects as a micro inertia and a curvature stiffness have to be taken into account. The latter increases the strength-to-weight ratio of thin-walled leightweight structures due to a separate twisting and bending stiffness of the fiber bundles. In this paper, these secondary effects are introduced in a continuum formulation by means of independent drilling degrees of freedom. A corresponding non-isothermal constrained micropolar continuum is derived by a mixed principle of virtual power. In the discrete setting, this variational principle simultaneously generates a mixed B-bar method and a Galerkin-based energy-momentum scheme of higher order. We also take into account viscoelastic material behaviour in the matrix material and the fiber bundles, which arises from a mixture of organic and inorganic fibers in a polymer matrix. Here, the viscous evolution equations of the fibers are solved elementwise by using a mixed field as viscous internal variable. Representative numerical examples with higher order energy-momentum schemes demonstrate the inelastic material behaviour, the effect of micro inertia on the physical properties of the continuum as well as on its space-time discretization and, finally, the twisting and bending stiffness of the fiber bundles. This paper is motivated by the increasing application of 3D fiber-reinforced composites. We find such composites in rotating systems with high rotational speed. In the well-known production of 2D fiber-reinforced materials, single fibers with a diameter in the range of micrometers are embedded in a matrix material. But, these composites are prone to delamination damage, wherefore the development of 3D composites has been undertaken. Here, fiber bundles are woven, knitted, braided or stitched, in order to fix the fibers before they are surrounded by a matrix material. From a mechanical modelling point of view, these two kind of composites make a huge difference, because a fiber bundle has to be considered as a beam-like structure with twisting and bending (curvature) stiffness, in addition to the usual stretching stiffness. A single fiber can be considered as an ideally thin and perfectly flexible string. But, in both theories, a continuum modelling can be realized with so-called structural tensors, which indicate the directions of fibers or fiber bundles in a matrix material. The need to take into account a bending stiffness of a fiber bundle can be shown by comparing an experiment with a standard finite element analysis with identified material parameters. This experiment is a three-point bending test of a 3D woven composite beam, and obviously shows the influence of curvature stiffness. Beam ends are stiff and the curvature below the mobile point is large, which is contrary to a standard finite element analysis. The reason is that, a standard finite element analysis is based on a so-called Cauchy-Boltzmann continuum formulation, which only takes into account the first-order gradient of the deformation without curvature effects.

ECCOMAS Coupled 2021 (online event)

The nonlinear finite element method is a computational method in the variational simulation of material models for materials with and without microstructures. Taking into account microstructures of engineering materials in their computational models is often worthwhile to improve numerical predictions. An example is the modelling of fiber-reinforced materials, which are manufactured on the microscale by filaments or on the mesoscale by rovings, respectively. A macroscopic finite element simulation of both materials provides an anisotropic continuum model. However, fiber-reinforced materials based on rovings demand for continua with extended kinematics. A computational modelling of extended continua is possible by a mixed finite element method. In this contribution, we show the introduction of internal rotational degrees of freedom to model also a stiffness with respect to roving flexure and twist. Furthermore, a corresponding structure-preserving time integration is obtained. Numerical examples also demonstrate the additional continuum stiffness owing to the consideration of roving flexure and twist.

GAMM 2020@21 (Virtual meeting 2021)

In mechanical engineering, the finite element method is well-known in the simulation of homogeneous materials without microstructures. But, in particular, microstructures can improve materials with respect to their applicability in engineering. Examples are 2D- and 3D-fiber-reinforced materials, which are manufactured in the microscale or mesoscale, respectively. An efficient finite element simulation of these materials provides an anisotropic continuum formulation. However, 3D-fiber-reinforced materials demand continua with extended kinematics. The introduction of such extended continua is possible by mixed finite element methods. In this paper, we introduce internal rotational degrees of freedom to model also a stiffness with respect to fiber flexure and twist. The kinematic formulation can be explained by using a covariant continuum formulation based on curvilinear convected coordinates. In this context, new objective deformation measures and power-conjugate stress tensors are derived. Therefore, a corresponding energy-momentum scheme is obtained and simulates numerical examples stable and efficient in accordance with discrete balance laws. These examples demonstrate the additional material stiffness with fiber curvature-twist strain energy functions of Kauderer-type by parameter studies with respect to material parameters, body geometry and fiber directions.

WCCM 2020 (Virtual concress 2021)

This paper is motivated by the increasing application of 3D fiber-reinforced composites in rotating systems. In 2D fiber-reinforced composites, single fibers with a diameter in the range of micrometers are embedded in a matrix material. But, these composites are prone to delamination damage, wherefore the development of 3D composites has been undertaken. Here, fiber bundles are woven, knitted, braided or stitched, in order to fix the fibers before they are surrounded by a matrix material. From a material modelling point of view, these two kind of composites make a huge difference, because a fiber bundle has to be considered as a beam-like structure with curvature-twist (bending as well as twisting) stiffness, in addition to the usual stretching stiffness. The former is then responsible for the increasing strength-to-weight ratio of 3D fiber-reinforced composites for thin-walled lightweight structures. Therefore, 3D fiber-reinforced composites demand for a bespoke simulation technique. We have to consider a representative volume element, in which secondary effects as a micro inertia and a curvature-twist stiffness must be taken into account. We introduce these secondary effects in a continuum formulation by means of independent drilling degrees of freedom. The resulting non-isothermal constrained micropolar continuum is derived by a mixed principle of virtual power. This variational principle simultaneously generates in the discrete setting a mixed B-bar method and a Galerkin-based energy-momentum scheme of higher order. We also take into account viscoelastic material behaviour, which arises from a mixture of organic and inorganic fibers in a polymeric matrix material. Representative numerical examples demonstrate the twisting and bending stiffness of fibers.

GACM MS 2019

Fiber-reinforced plastics are made of an isotropic polymer matrix reinforced with inorganic or organic fibers. These composites become more and more important in light-weight structures. The major contribution to the internal dissipation in these fibrous composites is due to the isotropic matrix material. However, internal dissipation in the fibers has to be taken into account if Carbon or Kevlar fibers, respectively, are applied, or by using organic fibers, which are applied in the automotive industry, for example. The presented two-phase dissipation model is based on the multiplicative split of the deformation gradient of the composite in an elastic and viscous deformation gradient, as well as on the multiplicative split of the fiber deformation gradient in an elastic and viscous fiber deformation gradient. The corresponding viscous evolution equations are derived by a principle of virtual power together with further mechanical and thermal time evolution equations of a dynamic continuous problem. For instance, in the internal power, we consider free energy functions depending on matrix and fiber invariants. In the external power, the non-negative internal dissipation with respect to a positive-definite matrix viscosity tensor and a positive fiber viscosity parameter, respectively, are introduced. The internal power also includes mixed fields for the thermo-elastic matrix and fiber behaviour. In this way, we obtain a mixed stress- strain formulation, which also avoids locking behavior due to the stiff fibers embedded in the incompressible matrix material. Algorithmic terms in the virtual external power provide the energy-momentum scheme of this two-phase dissipation model. We demonstrate the independent dissipative material behaviour due to the matrix and the fibers in dynamic numerical examples with different mechanical and thermal boundary conditions.

GACM 2019

Textile manufacturing techniques as three-dimensional weaving of carbon yarns or the tailored fiber placement based on fixing carbon rovings on a base material are increasingly used for parts in rotordynamical systems. Examples are blades in turbine fans and pump rotors, disc brake rotors and shafts. These metamaterials allow for lower rotational masses while maintaining stiffness and improving heat conduction properties. This leads in rotordynamical systems to higher possible rotational speeds. Thereby, the direction-dependent heat conduction allows for a more efficient cooling in high temperature environments. A continuum formulation of such metamaterials has to take into account the bending stiffness of the yarns or rovings, because carbon yarns and rovings are made of thousends of carbon fibers. A standard Cauchy-continuum with a free energy based on structural tensors are not able to describe this fiber bending stiffness, because fibers are assumed as infinitely thin strings. This results in a three-point bending test of metamaterials simulated by finite elements to wrong curvature effects, in comparison to experimental data. The bending stiffness of the yarns or rovings can be taken into account by tensor invariants based on the second gradient of the deformation mapping, which leads to a generalized continuum formulation. In this paper, we consider a mixed formulation of a generalized continuum, in which the deformation gradient and the first Piola-Kirchhoff stress tensor as well as the continuum rotation vector, the angular velocity vector and the rotational momentum vector are introduced as independent fields. The corresponding weak forms arise from a principle of virtual power, which allows for energy-momentum time integrations of the considered rotordynamical systems. In this principle, the kinetic energy includes the translational energy of a standard Cauchy continuum based on the linear momentum, and the additional rotational energy with a micro-inertia tensor of a generalized continuum. This leads to two additional balance laws in comparison to a standard Cauchy continuum: the balance law of rotational momentum and the balance law of rotational energy. The exact preservation of these two balance laws along with the preservation of each balance law of a standard Cauchy continuum allows the derived energy-momentum scheme. We demonstrate the behavior of this physically-consistent simulation method by using dynamic simulations of a turbine rotor, a disc brake rotor and a rotating shaft subject to thermal and mechanical loads.

ECCOMAS Coupled 2019

Fiber-reinforced plastics (FRP) are composite materials made of an isotropic polymer matrix reinforced with organic or inorganic fibers. These materials become more and more important in order to provide light-weight structures. The major contribution to the internal dissipation in FRP is due to the isotropic matrix material. However, internal dissipation in the fibers has to be taken into account if Carbon or Kevlar fibers, respectively, are applied. Therefore, we introduce in this presentation a new two-phase dissipation model at finite strains with viscoelastic behaviour in the matrix and the fibers. This model is based on the multiplicative split of the deformation gradient of the composite in an elastic and viscous deformation gradient, respectively, as well as on the multiplicative split of the fiber deformation gradient in an elastic and viscous fiber deformation gradient, respectively. However, the time-dependent matrix behaviour depends directly on the principal invariants of the symmetric elastic right Cauchy-Green tensor. Analogously, the trace of the elastic fiber right Cauchy-Green tensor determines the time evolution of the viscous fiber deformation. We consider free energy functions, depending on these matrix and fiber invariants, in the virtual internal power of a mixed principle of virtual power. In the virtual external power, the non-negative internal dissipation with respect to a positive-definite viscosity tensor or a positive fiber viscosity parameter, respectively, is introduced. In this way, we derive the viscous evolution equations by a variation. The virtual internal power also includes mixed fields for the thermo-elastic matrix and fiber behaviour. Algorithmic terms in the virtual external power lead to an energy-momentum scheme, which provide energy-momentum time integrations of this two-phase model.

GAMM MS 2019

Three-dimensional woven carbon-fiber reinforced polymers (3D-CFRP) are being increasingly used for blades in rotordynamical systems as turbine fans and wind turbines as well as disc brake rotors. These light-weight materials allow for lower rotational masses while maintaining stiffness and improving heat conduction properties. This leads in turbine fans to higher possible rotational speeds, and allows for longer and thus more efficient blades in wind turbines. Thereby, the direction-dependent heat conduction allows for a more efficient cooling in high temperature environments. By using dynamic mixed finite-element methods, these materials can be simulated as anisotropic continua with non-isothermal behaviour in the matrix as well as the fiber material. On the other hand, the rotordynamical systems in which these 3D-CFRP are applied are often formulated by variational approaches. Simulation techniques building on these approaches are preferable. Therefore, we present a novel dynamic mixed finite-element method which is variational-based, and therefore capable to simulate these materials in rotordynamical variational formulations. This dynamic mixed finite-element method preserves each basic balance law emanating from the variational principle exact in a discrete setting. This leads to more physically-consistent results concerning the thermo-mechanical coupling effects. By using independent fields for the deformation of the matrix and the fibers, we also avoid unphysical locking effects. We demonstrate this physically-consistent simulation behaviour by using dynamic simulations of a turbine rotor, a disc brake rotor and a rotating heat-pipe subject to thermal and mechanical loads.

ICNAAM 2018

We present noval higher-order accurate energy-momentum schemes for fiber-reinforced thermo-viscoelastic materials, which additionally includes a new locking-free finite element approximation in space. The well-known locking effect of a standard displacement approximation is avoided by approximating the volume as well as the fiber dilatation with independent fields. Both, the energy-momentum time integration as well as the locking-free finite element approximation are derived by a multi-field principle of virtual power. This variational principle acts as a `smart interface' between the energy-momentum consistent time approximation and the mixed finite element approximation in space. Mechanical as well as thermal fields are approximated independently by higher-order finite elements in space as well as in time. The considered material formulation takes into account thermal volume expansion and heat conduction of a visco-elastic matrix material, and an independent thermal expansion as well as heat conduction of unidirectional fibers. In comparison to a standard time integration with standard finite elements, the fields of deformation, linear momentum, temperature, entropy density as well as volume and fiber strains and stresses are approximated independently in space and time. As numerical examples, we show motions of thin-walled thermo-mechanical structures.

ECCM 2018

In this paper, we present a new higher-order accurate energy-momentum time integration of fiber-reinforced thermo-viscoelastic continua. The energy-momentum schemes are derived from a multi-field principle of virtual power, in which mechanical as well as thermal fields are approximated independently by higher-order finite elements in space as well as in time. In comparison to Gross M. and Dietzsch J. (2017) Variational-based energy-momentum schemes of higher-order for elastic fiber-reinforced continua, Comput. Methods Appl. Mech. Engrg., 320: 509--542, we also consider thermal volume expansion of a visco-elastic matrix material and thermal expansion of unidirectional fibers, as well as tranversely-isotropic heat conduction due to Al-Kinani R. (2014) Thermo-mechanical coupling of transversely isotropic materials using high-order finite elements, Phd-thesis, Faculty of Mathematics/Computer Science and Mechanical Engineering, Clausthal University of Technology. Therefore, in addition to the linear momentum and the deformation, the entropy and the temperature are approximated independently in space and time. The used multi-field principle of virtual power also introduces the strains and stresses of the matrix as well as the fiber strains and stresses as independent variables. As we consider an isochoric-volumetric decoupling of the free energy function of the matrix material, the volumetric strain and stress fields are approximated independently by spatial and temporal finite elements. In this way, the third and fourth tensor invariant of the right-Cauchy Green tensor and the structural tensor of the considered tranversely-isotropic material are independent fields and discretized independently in space and time together with their associated dual variables. We show numerical examples with transient Dirichlet and Neumann boundary conditions.

GAMM 2018

In this presentation, novel higher-order accurate energy-momentum schemes are presented, emanating from a discrete mixed principle of virtual power. These time-stepping schemes are designed for simulating an uni-directional fiber-reinforced material, considered as transversally isotropic nonlinear continua. The matrix material is considered as an isotropic thermo-viscoelastic material and the fibers behave thermo- elastic. Hence, the model takes into account an independent conduction of heat according to Duhamel's law with a transversally isotropic conductivity tensor as well as an independent heat expansion and heat capacity of the matrix and the fibers. The higher-order accurate energy-momentum schemes preserve each balance law of the continuous problem also in the discrete setting, independent of the chosen time step size and the prescribed Neumann and Dirichlet boundary conditions. Therefore, the implemented time step size control with the iteration number as target function does not influence the preservation properties of the time-stepping schemes. The balance laws are also preserved together with different time scales in the mechanical, thermal and viscous time evolution. By calculating each generalized reaction on the boundary, numerical examples verify the energy-momentum consistency of the schemes applied to dynamic simulations of different transient Dirichlet and Neumann boundary conditions.

ECCOMAS MSF 2017

The most widely-used materials in mechanical engineering are metals, which are able to dissipate relatively well generated heat as well as to conduct arising strong forces. But, solids made of metals are usally not used in leight-weight structures due to their considerable weight. In this case, metal foams or fiber-reinforced polymers are the materials of choice. In this paper, we consider polymers reinforced by one familie of fibers conducting heat as well as strong forces independently in two directions. The heat conduction model is based on Duhamel's law of transversely isotropic heat conduction, which prescribe heat conduction in fiber direction with an own conductivity coefficient as well as heat conduction normal to the fibers in the matrix material. The heat capacity coefficient of the fiber-reinforced material is assumed linear in temperature. The thermal expansion of the matrix material is defined as volume change depending linearly on the temperature, but the independent thermal expansion of the fibers are assumed as length change depending linearly on the temperature. We simulate nonlinear rotordynamics examples as fast rotating bodies with large deformations. Therefore, we model a flexible body as transversely isotropic thermoelastic continuum, and discredize it by linear or quadratic finite elements. The transient simulation is performed by a higher-order accurate time integration method, called ehG method, which determines independently of the time step size a non-positive thermal dissipation arising from Duhamel's law, and therefore fulfills the corresponding stability estimate based on the Lyapunov function of thermoelasticity numerically exactly.

ICNAAM 2016

In this paper, a new class of time-stepping schemes for structural dynamics is presented, which originally emanate from Gauss-Runge-Kutta schemes as traditional representatives of higher-order symplectic-momentum schemes. The presented time stepping schemes belong to the family of higher-order energy-momentum schemes, which represent Gauss-Runge-Kutta schemes with a physically motivated time approximation of the considered mechanical system. As higher-order energy-momentum schemes so far are not derived by using a straight-forward design method, a variational-based design of energy-momentum schemes is shown. Here, a differential variational principle of continuum mechanics, Jourdain's principle, is discretized, and energy-momentum schemes emanate as discrete Euler-Lagrange equations. This procedure is strong related, but is not identical, to the derivation of variational integrators (VI), which emanate from discretising a Lagrange function or Hamilton's principle, respectively. Furthermore, this design procedure is well suited to connect energy-momentum schemes with numerical modifications based on mixed variational principles, as the enhanced assumed strain elements for improving the spatial discretisation in direction of a locking-free discrete formulation. Therefore, a Q1/E9 energy-momentum scheme of higher order for the continuum formulation of fiber-reinforced materials is presented. This material formulation is important for simulating dynamics of light-weight structures.

ECCOMAS 2016

For many years, the importance of fiber-reinforced polymers is steadily increasing in mechanical engineering. According to the high strength in fiber direction, these composites replace more and more traditional homogeneous materials, especially in lightweight structures. Fiber-reinforced material parts are often manufactured from carbon fibers as pure attachment parts, or from steel for transmitting forces. Whereas attachment parts are mostly subjected to small deformations, force transmission parts usually suffer large deformations in at least one direction. For the latter, a geometrically non-linear formulation of these anisotropic continua is indispensable. A familar example is a rotor blade, in which the fibers possess the function of stabilizing the structure in order to counteract large centrifugal forces. For long-run numerical analyses of rotor blade motions, we have to apply numerically stable and robust time integration schemes for anisotropic continua. This paper is an extension of Erler N and Gross M (2015) Energy-momentum conserving higher-order time integration of nonlinear dynamics of finite elastic fiber-reinforced continua. Computational Mechanics 55(5):921--942, which is in turn an extension of Gross M and Betsch P and Steinmann P (2005) Conservation properties of a time FE method. Part IV: higher order energy and momentum conserving schemes. Int J Numer Methods Engng 63:1849--1897 to a special anisotropic material class, namely a transversely isotropic hyperelastic material based on the wellknown concept of structural tensors. In the latter Reference, higher-order accurate time-stepping schemes are developed systematically with the focus on numerical stability and robustness in the presence of stiffness combined with large rotations for computing large motions. In the former work, these advantages over conventional time stepping schemes are combined with highly non-linear anisotropic material formulated with polyconvex free energy density functions. The corresponding time integrators preserve all conservation laws of a free motion of a hyperelastic continuum, which means the total linear and the total angular momentum conservation law as well as the total energy conservation law. Both are numerically advantageous, because it guarantees that the discrete configuration vector is embedded in the physically consistent solution space. In order to guarantee the preservation of the total energy, the transient approximation of the anisotropic stress tensor is superimposed with an algorithmic stress field based on an assumed 'strain' field. The presented numerical examples show the behaviour of the non-linear anisotropic material in Schröder J and Neff P and Balzani D (2005) A variational approach for materially stable anisotropic hyperelasticity. Int J Sol Struc 42:4352--4371 under static and transient loads, their conservation laws and the higher-order accuracy of the variational based time approximation.

GAMM 2016

For many years, the application of fiber-reinforced materials is steadily increasing in mechan- ical engineering. These composites replace more and more traditional homogeneous materials in lightweight constructions. Fiber-reinforced material parts are often manufactured from car- bon fibers as pure attachment parts, or from steel for transmitting forces. Whereas attachment parts are mostly subjected to small deformations, force transmission parts usually suffer large deformations. For the latter, a geometrically non-linear formulation of these anisotropic con- tinua is indispensable. A well-known example is a rotor blade, in which the fibers possess the function of stabilizing the structure. For long-run numerical analyses of rotor blade motions, we have to apply numerically stable and robust time integration schemes for anisotropic con- tinua. This work is an extension of the publication Erler N, Groß M (2015) Energy-momentum con- serving higher-order time integration of non-linear dynamics of finite elastic fiber-reinforced continua, Computational Mechanics, Volume 55, Issue 5, pp 921–942, which is in turn an extension of the publication Groß M, Betsch P, Steinmann P (2005) Conservation properties of a time FE method. Part IV: higher order energy and momentum conserving schemes. Int J Numer Methods Eng 63:1849–1897 to a special anisotropic material class, namely a transver- sally isotropic hyper-elastic material. In the latter work, higher-order accurate time integration schemes are developed, with the focus on numerical stability and robustness in the presence of stiffness combined with large rotations. In the former work, these advantages over standard time-stepping schemes are combined with highly non-linear anisotropic material behaviour. The corresponding time integrators preserve all conservation laws of a free motion of a hyper- elastic continuum, which means the total linear and total angular momentum as well as the total energy conservation law. Both are numerically advantageous, because it guarantees that the discrete configuration vector is embedded in the physically consistent solution space. In order to guarantee the preservation of the total energy, the transient approximation of the anisotropic stress tensor is enhanced in connection with assumed strains.

WCCM 2014

This paper deals with an energy-entropy-consistent time integration of a thermo-viscoelastic continuum in Poissonian variables. The four differential evolution equations of first order are transformed by a new GENERIC format into a matrix-vector notation. Since the entropy is a primary variable we include thermal constraints to affect the temperatures at the boundaries. This enhanced GENERIC format with thermal constraints yields with the related degeneracy conditions structure preservation properties for a system with thermal constraints. The properties of an isolated system are in addition to a constant linear and angular momentum, the constant total energy, an increasing total entropy and a decreasing Lyapunov function. The last one is a stability criterion for thermo-viscoelastic systems and also for unisolated systems without loads valid. The discretization in time is done with a new TC (Thermodynamically Consistent) integrator. This enhanced TC integrator is constructed such, that the algorithmic structural properties after the discretization in time reflect the underlying enhanced GENERIC format with thermal constraints. As discretization in space the Finite-Element-Method is used. A projection of the test function of the thermal evolution equation is necessary for an energy-consistent discretization. The enhanced GENERIC format with thermal constraints, which is here given in the strong evolution equations, contains the external loads. This yields the necessary weak evolution equations for the solution of the system. The consistency properties are shown for representative numerical examples with different boundary conditions. The coupled mechanical system is solved with a multi-level Newton-Raphson method, based on a consistent linearization.

GAMM 2014

This paper presents an energy-entropy-consistent time stepping scheme for finite thermo-viscoelasticity in Poissonian variables. The four time evolution equations of first order are transformed by a new General Equation for Non-Equilibrium Reversible-Irreversible Coupling (GENERIC) format into a matrix-vector format. As the entropy is a primary variable, we include algebraic constraints to affect the temperatures at the boundaries. This enhanced GENERIC format with thermal constraints yields with the related degeneracy conditions structure preservation properties for a closed and a open thermomechanical system. The properties of a closed system are in addition to a constant linear and angular momentum, the constant total energy, an increasing total entropy and a decreasing Lyapunov function. The last one is a stability criterion for thermomechanical systems and also for open systems without loads valid. The discretization in time is done with a new TC (Thermodynamically Consistent) integrator. This enhanced TC integrator is constructed such, that the algorithmic structural prop- erties after the discretization in time reflect the underlying enhanced GENERIC format with thermal constraints. The discretization in space is performed by the Finite-Element-Method. A projection of the spatial test function of the thermal evolution equation is necessary for an energy-consistent discretization. The enhanced GENERIC format with thermal constraints, which is here given in the strong evolution equations, contains the external loads. This yields the necessary weak evolution equations for the solution of the system. The consistency prop- erties are shown for representative numerical examples with different boundary conditions. The nonlinear algebraic equations of this thermomechanically coupled system is solved with a multi-level Newton-Raphson method based on a consistent linearization.

GAMM 2013

Presently, there is a significant effort to find more robust and reliable time integration methods for thermo-mechanically coupled dynamics. One possible way of designing such methods is the structure-preserving time integration. The goal here is a method, which ensures that physical features of the underlying problem are also inherited by the discrete solution. Structure-preserving methods have already proven their excellent robustness as well as their reliability of finding meaningful solutions of different thermo-mechanically coupled problems. However, the ability of these methods to take into account different time scales has hitherto based on a fractional step method. Using such a method, we obtain a so-called h-adaption of the time axis, because the problem is solved sequentially on so-called micro time steps. An alternative way is to use a Galerkin-based structure-preserving method in order to increase the degree of the shape functions in time, i.e. a p-adaption in time. Here the problem is solved simultaneously on so-called macro time steps. In this paper, we present such a finite element method in time for thermo-viscoelastodynamics.

ECCOMAS 2012

Presently, there is a significant effort to find more robust and reliable time integration methods for thermo-mechanically coupled dynamics. One possible way of designing such methods is the structure-preserving time integration. The goal here is to design a method, which ensures that physical features of the underlying problem are inherited by the discrete solution. Structure-preserving methods have already proven their excellent robustness as well as their reliability of finding meaningful solutions of different thermo-mechanical problems. However, the ability of these methods to take into account different time scales in the different sub-solutions has hitherto based on a fractional step method. Using a fractional step method, we obtain a so-called h-adaption of the time axis, because the problem is solved sequentially on so-called micro time steps. An alternative way is to use a Galerkin-based structure-preserving method in order to increase the degree of the ansatz functions in time. This corresponds to a p-adaption, which solves the problem simultaneously on all micro time steps. In this paper, we present a Galerkin-based method for problems with different time scales such as finite thermo-viscoelastodynamics. Here, the thermal and the mechanical time scales, respectively, are usually different, where the mechanical time scales are the motion and the internal variables.

Bohemian-Saxon-Silesian Mechanics Colloquium 2011

Heutzutage ist bei der Entwicklung technischer Produkte die Optimierung der verwendeten Werkstoffe eine wichtige Aufgabe. Deshalb kommen immer öfter Materialien zum Einsatz deren physikalische Eigenschaften, wie Leitfähigkeit und Deformationsverhalten, weitgehend einstellbar sind. Zu diesen Materialien zählen die sogenannten Kunststoffe oder Polymere, die man gewöhnlich in Elastomere, Duroplaste und Thermoplaste einteilt. Neuere Entwicklungen im Automobilbereich sind zum Beispiel mikrozellulare Elastomere als Fahrwerksfedern oder Duroplastschäume als Dämmmatten im Motorraum. Im Elektronikbereich werden neuerdings leitfähige Thermoplaste für Kühlkörper und Wärmerohre eingesetzt. Weiterhin wird bei der Produktentwicklung immer mehr auf den Kosten- und Zeitfaktor geachtet. Neue Produkte sollen schneller und kostengünstiger entwickeln werden. Dazu werden virtuelle Versuche in Form von Finite-Elemente-Simulationen betrachtet, und experimentelle Versuche zur Validierung der numerischen Resultate herangezogen. Ein typisches Beispiel ist die Fahrwerksentwicklung im Automobilbereich. Somit entsteht eine kombinierte Anwendung numerischer und experimenteller Verfahren. Damit numerische Simulationen realistische Resultate liefern können, müssen neben den zugrundeliegenden diskreten Gleichungen auch die zu deren Lösung verwendeten numerischen Verfahren physikalisch konsistent sein. Diese Konsistenz sollte unabhängig von Diskretisierungsparametern wie Elementgrösse und Zeitschrittweite sein, damit die Simulationszeit reduziert werden kann. Somit entsteht der Wunsch sowohl nach einer versteifungsfreien räumlichen Diskretisierung, als auch nach einer energie-impuls-konsistenten zeitlichen Diskretisierung. Diese spezielle Zeitdiskretisierung garantiert selbst bei grossen Zeitschrittweiten die geforderte physikalische Konsistenz, als auch die gewünschte numerische Stabilität. Dieser Vortrag befasst sich im Hauptteil mit der energie-impuls-konsistenten Zeitdiskretisierung für mikrozellularer Elastomere. Die zu bewahrenden physikalischen Eigenschaften folgen aus der Modellierung des nichtlinearen viskoelastischen Verhaltens, des thermo-viskoelastischen Aufheizens, sowie aus einer isotropen Wärmeleitung und -speicherung.

Universität der Bundeswehr, Neubiberg, Fakultät LRT, 12.-13. Februar 2020

Locking-Phänomene bei Finiten Elementen bezeichnen Versteifungseffekte wie Schub-Locking, Trapez-Locking und Volumen-Locking. Diese Effekte werden gewöhnlich durch sogenannte Konvergenzkurven einer primären mechanischen Größe wie Verschiebung oder Spannung aufgetragen über einer steigenden Anzahl von Freiheitsgraden eines Finite-Element-Netzes experimentell identifiziert. Locking-Reduktion wird aber durch eine Algorithmenänderung des Finiten Elementes selbst durchgeführt, da die Gründe für Locking in der Approximation der primären physikalischen Größen auf dem Finiten Element zu suchen sind. Deshalb bietet sich auch die zweite Möglichkeit zur experimentellen Identifikation eines Locking-Phänomenes an: Die Darstellung der primären Größe über steigende Werte eines kritischen Parameters. Dieser kritische Parameter kann analytisch mittels der Verzerrungsenergie ermittelt werden, und ist vom Locking-Typ abhängig. Somit kann die Untersuchung von Locking-Phänomenen auch an einem einzelnen Finiten Element durchgeführt werden. Ziel dieser Vorlesung ist die Demonstration der obigen Locking-Typen mittels linear-elastischem Materialverhalten bei kleinen Deformationen. Es wird auch gezeigt, dass die Gründe für die oben genannten Locking-Phänomene in parasitären Spannungen liegen. Dazu werden anhand von ausgewählten Testbeispielen symbolische Finite-Elemente-Lösungen mit analytischen Lösungen verglichen. Somit wird auch gezeigt, dass Locking nicht nur experimentell, sondern auch analytisch identifiziert und begründet werden kann.