Pressemitteilung vom 04.01.2024
Pikonewton-Federn zum Messen, Greifen und Bewegen im Mikrokosmos
Forschende aus Chemnitz, Dresden und Shenzhen (China) beschreiben in einem Artikel im renommierten Fachjournal „Nature Nanotechnology“, wie winzige magnetische Federn medizinische Anwendungen einen großen Schritt weiterbringen können
Die Integration eines mechanischen Gedächtnisses in Form von Federn ist seit Hunderten von Jahren eine Schlüsseltechnologie für mechanische Geräte (z. B. Uhren), die durch komplexe autonome Bewegungen eine erweiterte Funktionalität erreichen. Heute hat die Integration von Federn in die siliziumbasierte Mikrotechnologie die Welt planarer, massenproduzierbarer mechatronischer Geräte revolutioniert, von denen wir alle profitieren, z. B. durch Airbag-Sensoren. Für die Biomedizin, die in Zukunft auf immer weniger invasive Verfahren zurückgreifen möchte, wird die Größenskala einer einzelnen Zelle eine immer wichtigere Rolle spielen. Winzige bewegliche Geräte, die sicher mit einzelnen Zellen interagieren können, müssen in viel kleinere Dimensionen vorstoßen (etwa zehn Mikrometer), in maßgeschneiderten dreidimensionalen Formen hergestellt werden und mit viel geringeren Kräften auf der Pikonewton-Skala auskommen, etwa beim Heben von Gewichten von weniger als einem Millionstel Milligramm.
Forscherinnen und Forscher der Technischen Universität Chemnitz (TUC), des Shenzhen Institute of Advanced Technology der Chinesischen Akademie der Wissenschaften und des Leibniz-Instituts für Festkörper- und Werkstoffforschung (IFW) Dresden zeigen in ihrer aktuellen Veröffentlichung in der renommierten Fachzeitschrift „Nature Nanotechnology“, dass steuerbare Federn mittels konfokaler photolithographischer Fertigung mit einer Präzision im Nanometerbereich an beliebigen Stellen in weiche dreidimensionale Strukturen integriert werden können. Bei dieser Technik wird ein neuartiges magnetisch aktives Material in Form eines Fotolacks verwendet, der mit magnetischen Nanopartikeln imprägniert ist. Diese „Pikofedern“ haben eine bemerkenswert große und einstellbare Beweglichkeit und können durch Magnetfelder ferngesteuert werden – sogar tief im menschlichen Körper, was Gelenkbewegungen von Mikrorobotern sowie Mikromanipulationen weit über den aktuellen Stand der Technik hinaus ermöglicht.
Darüber hinaus kann die Auslenkung von Pikofedern auch zur visuellen Messung von Kräften, beispielsweise von Antriebs- oder Greifkräften, bei der Interaktion mit anderen Objekten, wie etwa Zellen, genutzt werden. So wurden die Pikofedern unter anderem zur Messung der Antriebskraft von Mikromotoren und sich fortbewegenden Zellen, wie z. B. Spermien eingesetzt. In der nun veröffentlichten Fachpublikation werden diese Fähigkeiten anhand mehrerer Konstruktionen beschrieben, die an geeigneten Stellen Pikofedern enthalten und diverse Aufgaben auf zellulärer Ebene ausführen können. Sie können schwimmen, gehen, Zellen greifen und loslassen und die dazu notwendigen winzigen Kräfte genau messen und ausüben. Die Abbildungen 1 und 2 zeigen zwei dieser neuartigen Strukturen mit eingebauten Pikonewton-Federn – einen Mikro-Greifer und einen Mikropinguin, entnommen aus der Veröffentlichung [https://doi.org/10.1038/s41565-023-01567-0].
Prof. Dr. Oliver Schmidt, Letztautor und Betreuer dieser Forschungsarbeit sowie Wissenschaftlicher Direktor des Forschungszentrums MAIN der TUC, sieht darin einen weiteren wichtigen Schritt auf dem Weg zu einer lebensfähigen, weichen und intelligenten modularen Mikrorobotik. „Ferngesteuerte Mikrogeräte, die magnetische Felder nutzen, sind eine besonders vielversprechende Technologie für nicht-invasive medizinische Anwendungen – und dies gilt nun auch für die Mechanik innerhalb dieser ferngesteuerten Mikrogeräte“, so Schmidt.
„Die Möglichkeit, mikroskopische Einbaufedern zu integrieren, wird auch die wachsenden Kompetenzen der TU Chemnitz im Bereich der mikroelektronischen Morphogenese und des künstlichen Lebens um ein neues Werkzeug erweitern“, sagt Prof. John McCaskill, Ko-Autor der Studie, Mitglied im Forschungszentrum MAIN und Gründungsdirektor des Europäischen Zentrums für Lebende Technologien. Über die mikroelektronische Morphogenese berichtete die TU Chemnitz erst kürzlich im Detail in einer Pressemitteilung (https://www.tu-chemnitz.de/tu/pressestelle/aktuell/12105).
Dieses Projekt wurde vom Europäischen Forschungsrat (ERC) im Rahmen des Forschungs- und Innovationsprogramms Horizon 2020 der Europäischen Union finanziert (Fördervereinbarungen Nr. 835268 und Nr. 853609).
Publikation: 3D nanofabricated soft microrobots with super-compliant picoforce springs as onboard sensors and actuators, Haifeng Xu, Song Wu, Yuan Liu, Xiaopu Wang, Artem K. Efremov, Lei Wang, John S. McCaskill, Mariana Medina-Sánchez, Oliver G. Schmidt. Nature Nanotechnology (2024).
DOI: https://doi.org/10.1038/s41565-023-01567-0
Weitere Informationen erteilen Prof. Dr. Oliver G. Schmidt, Wissenschaftlicher Direktor des Forschungszentrums MAIN sowie Inhaber der Professur Materialsysteme der Nanoelektronik an der TU Chemnitz, E-Mail oliver.schmidt@…, sowie Prof. John S. McCaskill, Forschungszentrum MAIN und Fellow des European Centre for Living Technology, Venedig, E-Mail john.mccaskill@….
Hinweis für die Medien: Die in der Meldung erwähnten Abbildungen 1 und 2 finden Sie hier zum Download:
https://idw-online.de/de/image?id=387330&size=screen
https://idw-online.de/de/image?id=387331&size=screen